Eurotronics - a world-wide circuit and design idea competition, with over £10,000 worth of electronic equipment to be won! Note that the closing date for the competition is 31st March, 1979.

See this issue for further details

international circuit and design idea competition

The professional scopes you've always needed.

When it comes to oscilloscopes, you'll have to go a long way to equal the reliability and performance of Calscope.

Calscope set new standards in their products, as you'll discover when you compare specification and price against the competition.

The Calscope Super 10, dual trace 10 MHz has probably the highest standard anywhere for a low cost general purpose oscilloscope. A 3% accuracy is obtained by the use of stabilised power supplies which cope with mains fluctuations.

The price £219 plus VAT.

The Super 6 is a portable 6MHz single beam model with easy to use controls and has a time base range of 1μs to 100ms/cm with 10mV sensitivity. Price £162 plus VAT.

Prices correct at time of going to press

CALSCOPE DISTRIBUTED BY
Marshalls Electronic Components.
Kingsgate House,
Kingsgate Place,

Audio Electronics,
301 Edgware Road, London W.2.
Tel: 01-724 3564
Access and Barclay card facilities (Personal Shoppers)

Maplin Electronics Supplies Ltd.
P.O. Box 3
Rayleigh, Essex.
Tel: 0702 715 155
Mail Order
What is a TUN?
What is 10 n? What is the EPS service?
What is the TQ service? What is a missing link?

Semiconductor types

Very often, a large number of equivalent semiconductors exist with different type numbers. For this reason, abbreviated type numbers are used in Elektor wherever possible:

- '741' stand for uA741, LM741, MC641, MIC741,
 RM741, SN72741, etc.
- 'TUP' or 'TUN' (Transistor, Universal, PNP or NPN respectively) stand for any low
 frequency silicon transistor that meets the following specifications:

UCEO, max	20V
IC, max	100 mA
IIE, min	50
Prot, max	100 mW
FT, min	100 MHz

Some 'TUN's are: BC107, BC108 and BC109 families; 2N3856A, 2N3859, 2N3860, 2N3904,
2N3947, 2N4124. Some 'TUP's are: BC177 and BC178 families; BC179 family with the possible
exemption of BC159 and BC179; 2N2412, 2N2521, 2N3906, 2N4124, 2N4291.

- 'DUS' or 'DUG' (Diode Universal, Silicon or Germanium respectively) stands for any diode
 that meets the following specifications:

DUS	DUG
UR, max	25V
IF, max	100mA
IR, max	1A
Prot, max	250mW
CD, max	50F

Some 'DUS's are: BA127, BA217, BA218, BA221, BA222, BA237, BA318, BA319, BAY61, 1N914,
1N4145, 1N4144. Some 'DUG's are: OA85, OA91, OA95, AA116.

- 'BC1078', 'BC2378', 'BC478' all refer to the same 'family' of almost identical better-quality silicon transistors. In general, any other member of the same family can be used instead.

BC107 (8, 9) families:
BC107 (8, 9), BC147 (8, 9), BC207 (8, 9), BC237 (8, 9),
BC317 (8, 9), BC347 (8, 9), BC547 (4, 8), BC71 (3, 2),
BC182 (3, 4), BC382 (3, 4),
BC437 (8, 9), BC414

Resistor and capacitor values

When giving component values, decimal points and large numbers of zeros are avoided wherever possible. The decimal point is usually replaced by one of the following abbreviations:

p (pico) = 10^-12
n (nano) = 10^-9
µ (micron) = 10^-6
m (milli) = 10^-3
k (kilo) = 10^3
M (mega) = 10^6
G (giga) = 10^9

A few examples:

- Resistance value 2k7 ≈ 2700 Ω
- Resistance value 470 = 470 Ω
- Capacitance value 10pF or 0.000 000 000 004 7 F...
- Capacitance value 10n: this is the international way of writing 10 nF or .01 μF since 1 n = 10^9 farads or 1000 μF.
- Resistors are % Watt carbon types, unless otherwise specified.
- The DC working voltage of capacitors (other than electrolytics) is normally assumed to be at least 60 V. As a rule of thumb, a safe value is usually approximately twice the DC supply voltage.

Test voltages

The DC test voltages shown are measured with a 20 kΩ/V instrument, unless otherwise specified.
- U, not V
- The international letter symbol 'U' for voltage is often used instead of the ambiguous 'V'.
- 'V' is normally reserved for 'volts'. For example: U_V = 10 V, not V = 10 V.

Mains voltages

No mains (power line) voltages are listed in Elektor circuits. It is assumed that our readers know what voltage is standard in their part of the world!

Readers in countries that use 60 Hz should note that Elektor circuits are designed for 50 Hz operation. This will not normally be a problem; however, in cases where the mains frequency is used for synchronisation some modification may be required.

Technical services to readers
- EPS service. Many Elektor articles include a lay-out for a printed circuit board. Some - but not all - of these boards are available ready-etched and predrilled. The 'EPS print service list' in the current issue always gives a complete list of available boards.
- Technical queries. Members of the technical staff are available to answer technical queries (relating to articles published in Elektor) by telephone on Mondays from 14.00 to 16.30. Letters with technical queries should be addressed to: Dept. T.O. Please enclose a stamped, addressed envelope; readers outside U.K. please enclose an IRC instead of stamps.
- Missing link. Any important modifications to, additions to, improvements on, or corrections in Elektor circuits are generally listed under the heading 'Missing Link' at the earliest opportunity.
Eurotronics — a worldwide circuit and design idea competition, with over £10,000 worth of electronic equipment to be won! Note that the closing date for the competition is 31st March, 1979.

For some relatively simple control applications, the µP is really too sophisticated and a new type of chip may prove more suitable: the Industrial Control Unit. The ICU — a 'mini' microprocessor — offers the advantages of programmability, without the unnecessary (and sometimes bewildering) complexity of a fully-fledged µP.

A relatively large proportion of the 'fan mail' addressed to our Technical Queries department runs along the lines of: 'I have built your... and it works beautifully, but could you please suggest a suitable power supply circuit, preferably with a p.c. board?'. Apparently, there is quite a demand for PSUs on PCBs!

Electronics, as a hobby, used to be purely hardware-oriented. In recent years, however, software is gradually coming into the picture — as this month's cover symbolises!

Contents

- selektor .. 3-01
- crosstalk canceller 3-04
 - The weakest link in the hi-fi chain as far as crosstalk is concerned is the pickup. A Japanese firm, however, has recently introduced a special unit which, it is claimed, can dramatically improve the performance of cartridges in this respect.
- robust lab power supply 3-08
 - An essential of any electronics enthusiast's lab is a reliable power supply unit. The basic requirements for such a unit are that it provides a fully stabilised continuously variable output voltage and should be fully protected against fault conditions such as output short circuits. The circuit described meets all above points, is both simple and inexpensive, and should provide years of troublefree service.
- ring modulator 3-14
 - A ring modulator is a circuit which was originally employed in telecommunications systems for the modulation and detection of transmission signals. More recently however, the ring modulator has found an interesting application in the field of electronic music and is in fact now a common feature in many synthesizers.
- variable pulse generator (K. Kraft) 3-18
 - Many digital applications require the use of a pulse generator of which both frequency and duty-cycle are independently variable. The frequency range extends from approx. 1 kHz to 20 kHz, whilst the duty-cycle can be varied from almost 0 to 100%.
- eurotronics 3-19
 - Elektor is promoting the first worldwide circuit and design idea competition for electronics enthusiasts, with over £10,000 worth of electronic equipment to be won. Closing date: 31st March, 1979.
- TUP/TUN/DUS/DUG 3-20
- sinewave generator 3-21
 - A sinewave generator whose frequency can be continuously varied over virtually the entire audio spectrum, while being easy to construct and requiring no calibration. Just for good measure the circuit also offers the choice of a squarewave output.
- aplikator .. 3-24
 - Universal counter, type ICM 7216.
- the ICU — a 'mini' microprocessor 3-28
 - Recently, Motorola have brought out a new IC, the Industrial Control Unit, MC14500B. This is one-bit processor which has been specially designed for simple control applications, and is extremely easy to program. The following article takes a look at this 'mini'-microprocessor, which should prove of particular interest to those readers who have had problems getting to grips with its 'big brothers'.

PSUs on PCBs
- Building power supplies the easy way.

missing link
- % GHz counter; central alarm system.

market
- UK 16

Advertiser's Index
- UK 26

Supplement:
- BASIC (part 1), an introduction to a simple computer language.
More and more people are reading Elektor

A recent independent survey shows that on average 2.62 people read each copy of Elektor magazine each month. If you are one of the 70,000 who are not buying your own copy but reading someone else's we would like to draw your attention to the following:

Due to our growth of circulation and popularity of articles we find our stocks of back issues rapidly decreasing to such an extent that very soon the only readers with all 1979 copies will be those who purchased theirs on publication.

However, it is still possible to avoid this by taking out a subscription now for the rest of the year. Of course there are many other good reasons for subscribing not to mention the fact that you would receive your own copy prior to general availability. If you are new to Elektor a subscription for the whole of 1979 entitles you to a copy of every issue published so far this year at reduced prices.

A post paid order form is detailed overleaf for your convenience.
Printed passive components
A new method of producing capacitors, coils and resistors on foil has been
developed by Siemens. Introduced as
'Sicufol' circuits, these passive
components are produced as flat zones.
The rectangular, spiral and meandering
shapes of these zones and the material
used determine the capacitances,
inductances and resistances. The first
modules produced with this
technology were used in television sets.
The 'Sicufol' principle is based on
plastic foils made of polyimide or
Teflon, which are first coated with
copper in webs with lengths of several
hundred meters. Chrome-nickel layers
are then deposited, from which
capacitors and resistors are later
produced. The windings of the webs are
etched directly out of the copper layer.
The passive circuits formed next to each
other on the webs in this way are cut
off to produce finished modules.
Protective layers made of insulating
material provide both protection and
reinforcement.
In contrast to conventional circuit
board technology, the components are
deposited on both sides of the actual
carrier, the plastic webs being coated on
both sides with Cu and Cr-Ni. External
ancillary devices such as potentiometers,
filters and active integrated circuits are
subsequently inserted; their contacts
temperature coefficient of 600 ppm/K.
The users of 'Sicufol' circuits have at
their disposal a noteworthy range of
R, C and L ratings. Surface resistances
of between 20 and 300 ohm are
possible, the resistance may be increased
3800-fold by using meanders. The load
carrying capacity is 0.5 W/cm².
Capacitors with a polyimide carrier foil
dielectric have a surface capacitance
of 150 pF/cm². Finally, inductances of
up to 10 µH can be produced using two
spiral structures positioned directly one
above the other on each side of the foil.
Such an arrangement quadruples the
inductance.
The low thickness of the insulating
plastic carrier permits a variety of
through-plating methods, which can
greatly facilitate the accommodation of
new circuit designs. Furthermore,
conductors made of copper can be
soldered, even in a flow solder bath
just like circuit boards if a polyimide
foil is used (300°C permanent tempera-
ture stability). The solderability and the
additional reinforcement ensure that the
components customary in circuit
board technology can also be used
without restriction for 'Sicufol' circuits.
Siemens AG
Zentralstelle für Information
Postfach 103
D-8000 München 1
Federal Republic of Germany

Desirable residence for sale
'Situated in El Salvador in pleasant
surroundings, modern detached fully
equipped bachelors quarters with
excellent facilities. Having an unusual
roof design and an exceptionally good
reception area, would suit a radio or
electronics enthusiast. £ 6,000,000'.
Actually, El Salvador, the smallest of
the American states is the owner of this
communications satellite ground

Energy from space
However much like science fiction it
may sound, giant solar space power
stations providing energy for domestic
and industrial uses on Earth may be
possible. If pilot studies to develop
solar arrays into space power sources
prove economically feasible, then by
the end of the century giant orbiting
solar power stations could be in use.
Covering many miles, these would be
constructed in space from basic units
and materials transported from Earth
by advanced launch vehicles. By using
solar cells which convert the sun’s
rays to electrical energy, the large
arrays of today will, over the next
decades, emerge as the early stepping
stones which could lead to the
utilisation of space initiated by the
forthcoming Space Shuttle era.
Under contract to the European Space
Agency, Dynamics Group Electronic
and Space Systems organisation at
Bristol are already designing the huge
33 sq, metre (365 sq, ft.) 4 kW solar
array that will power a space telescope
for NASA. A 6 kW lightweight flexible
fold-out array is also being developed
for communication satellites of the
next decade and proposals are in hand
to augment the Space Shuttle power
using solar power modules of up to
60 kW. Other proposals exist to develop
arrays up to 500 kW as space power
sources. These could form modules for
further development up to 2 MW to
provide a space power station pilot
scheme which, if proved economically
feasible, would provide a basic source
of energy for use on Earth.
British Aerospace Dynamics Group,
Filton House,
Bristol,
England.
Laser gyro
Ferranti are to develop a laser gyro and to incorporate it in an experimental model of a strap-down inertial navigation system. The aim is, first, to produce a system for installation in transport aircraft, followed, if tests and trials are satisfactory, by the development of a laser-gyro navigator for combat aircraft.

Interest in the laser gyro exists because, potentially, it could provide a more robust and mechanically simpler device for detecting movement than the existing spinning-mass gyro employed today. Because of the greater simplicity it is also expected that the total cost of ownership (initial capital cost plus maintenance costs) of a laser-gyro inertial navigation system throughout its service life would be much less than the equivalent conventional gimbal gyro system. Currently the Ferranti Inertial Systems Department has developed a gimbal-supported inertial platform incorporating conventional spinning-mass gyros. However, a simpler method of sensing motion would be to eliminate the gimbal support and mount the gyros permanently in a fixed position — the so-called ‘strap-down’ configuration. In a gimbal system the platform is always maintained in a fixed orientation in space — the datum reference position. With a strap-down system the displacement of the gyro with respect to the starting datum is assessed and stored by a computer associated with the system.

The problem with the strap-down method is that the gyros used have to be mechanically robust and continue to perform with great accuracy even when subject to increased vibration and the higher angular and linear rates of accelerations implicit in being ‘strapped-down’. The spinning-mass gyros in the current designs of inertial platform are shielded to a considerable extent from these harsh conditions by virtue of being gimbal supported. The laser gyro, if it can be made to work with sufficient accuracy, offers a solution to this problem because it has no moving parts and is of rugged construction.

Principle of the laser gyro
The type of laser gyro Ferranti is developing is triangular in plan. It comprises a single block of vitreous ceramic material in which three cavities of circular cross-section have been drilled. The three cavities form a triangle in one plane. A mirror is positioned at the angular junction between each pair of cavities. The vitreous ceramic selected has a low temperature coefficient of expansion to ensure the mirrors remain accurately aligned with the cavities under all operational conditions. The cavities are filled with a lasing material and Ferranti have selected a helium neon gas mixture for this purpose. A cathode is situated midway along the length of one cavity and anodes are positioned towards the furthermost ends in the two remaining cavities. The helium neon mixture is excited to lase by electrical discharges occurring between the cathode and the two anodes. As a result, two independent coherent electromagnetic waves are generated — one travelling round the triangular resonating cavity in a clockwise direction, and the other in a counter-clockwise direction. If the assembly is now spun about a vertical axis perpendicular to the plane of the cavities the effective path around which one electromagnetic wave is travelling will appear to lengthen, and the other to shorten. To

a detector placed at one of the reflecting mirrors the frequency of the electromagnetic wave propagated in one direction will appear to increase while that of the other wave will decrease. The difference in frequency between the two waves is directly proportional to the rate of rotation of the chamber about its perpendicular axis. The detector produces output pulses at a frequency proportional to the rate of rotation. Angular rates of acceleration can be determined by assessing changes in output pulse frequency. This device has all the characteristics of a gyro — hence the laser gyro.

The major technical problems that have to be solved before the laser gyro becomes a practical proposition are:

a) the generation of a truly linear output signal at extremely low rates of angular rotation (the two wave patterns tend to ‘lock together’ under these conditions) and

b) to devise manufacturing techniques that enable the required high accuracies to be consistently achieved and maintained on a production basis.

Should the results attained in the new development programme be satisfactory it is expected that, from the mid to late 1980s onwards, laser gyros incorporated in ‘strap-down’ systems will be specified for many airborne applications.

Inertial Systems Department,
Ferranti Limited,
Silverknowes,
Ferry Road,
Edinburgh, EH4 4AD.

RCA enter the video disc market
Video recording is probably the biggest new innovation in home entertainment since the colour television and RCA are not alone in their view that video discs will be a multi-million dollar business in the 1980's. This company plan to achieve the earliest possible wide scale distribution of their ‘Selecta Vision’ video disc in the United States. The RCA system uses a grooved disc that is played with a diamond stylus at 450 revolutions per minute and contains one hour of programme per side. The player is designed for use with any television set, keeping the overall cost to a minimum. An unusual feature is the plastic sleeve resembling record album cover, which deposits the disc on the turntable when inserted into a slot on the front of the machine. The disc is
removed by reinserting the empty sleeve back into the player. In this system the sleeve is a protection against environmental hazards such as warping, dust and scratches and also prevents the disc being touched by hand. RCA's initial catalogue will contain 250 titles, including feature motion pictures, as well as childrens, how-to, sports, cultural, educational and musical programmes.

RCA International Ltd.
RCA House,
50, Curzon Street,
London, W1Y 8EU
England

\[\mu P\text{-}control for church organ\]

A microprocessor register control system has recently been fitted to the organ in the 600 year old St. Lorenz Church in Nuremberg. The system, known as the 'Registronik', was specially developed for the 138-register organ by two engineers of Siemens Gerätewerk, Erlangen. Up to forty register combinations can be stored for instant recall, so that the stops required for different pieces of music can be set before the performance. Whole recitals or the entire music for a church service can be preprogrammed in this way, leaving the organist free to operate the manuals and pedals so that he can give his full attention to the music itself. The control system is a very compact design, the stop keys being grouped together on a panel no larger than a notebook. The associated electronics are accommodated in a small metal cabinet in an adjoining room. The organ was previously equipped with an electromechanical four-combination register control system and, using conventional methods, forty combinations would have required more space than the rest of the organ. The organ which, except for the Passau organ, is the largest in the Federal Republic of Germany will certainly attract many people to Nuremberg.

Little L

A new range of ceramic chip inductors, available from Steatite Insulations Ltd, will not pass through the eye of a needle but the dimensions are sufficiently small for these electronics components to be used in thick film switch circuits. These miniature ceramic chip inductors are an entirely new development designed for hybrid technology with a fixed inductance. With nominal dimensions of only 2.5 mm x 2.5 mm x 1.9 mm, they have inductance ranges from approximately 4 nH to 1 μH, with tolerances of ±5 and 10%.

Are microprocessors nasty?

Apparently, microprocessors are nasty things — or so one would assume from the amusing title of a recent press release! However, the organisers of the All Electronics Show are also making every effort to bring the manufactures and potential users into (hopefully profitable) contact.

A unique gathering . . .

A unique gathering of the manufacturers of microprocessors (or 'chips', as they are familiarly known) has been arranged in the West End of London at which, free of charge, visitors may discuss how this new technology will affect them. Among those present are Texas Instruments, who invented the integrated circuit, and Fairchild Semiconductor who are now seen as the technology leaders.

The organisers of the event (The All-Electronics Show at Grosvenor House in Park Lane between 27th February and 1st March) claim that there is now virtually no industry in Britain which will not be affected by microprocessors. They add that every director and senior manager of a company manufacturing anything should get face-to-face with the manfacturers and distributors of a technology which the Government is supporting to the tune of £70 million per annum.

If you would like to ask even the most basic of questions, just send a stamp and addressed envelope to Sam Clarke, Dept. 3, 34-36 High Street, Saffron Walden, Essex and a free admission ticket — together with a special listing of the appropriate exhibitors — will be sent to you.

The All-Electronics Show,
Ars Electronica Ltd.,
34-36 High Street,
Saffron Walden, Essex
The weakest link in the hi-fi chain as far as crosstalk is concerned is the pickup. A Japanese firm, however, has recently introduced a special unit which, it is claimed, can dramatically improve the performance of cartridges in this respect. The following article takes a look at this interesting development.

Stereo reproduction has been with us now for a good twenty years or so, and the principles involved are well-known. Two separate sound channels are modulated in two different planes in the grooves of a disc. This 'left and right channel' information must be fed through separate amplifier channels to separate loudspeakers. If this is achieved, the result is more or less accurate 'positioning' of individual instruments within an overall sound image or stereo 'picture' as it is called (see figure 1). The position of a particular instrument, or of vocals, within the stereo image is determined by the proportion (and phase) of the corresponding electrical signal present in each channel. The greater the difference in signal strength, the more the resulting sound will appear to be shifted towards the loudspeaker of the channel where it is strongest.

Talking about crosstalk

In the ideal situation the left and right channel information is only combined as the output sound waves of the two loudspeakers encounter one another in the listening room. In practice, however, it is unfortunately the case that neither channel is completely free of some small part of the other channel. The effect of this is to reduce the differences between the two channels so that they tend to sound more similar. As figure 2 illustrates, the process is analogous to mixing a touch of black with a white paint and vice versa. The result is a light and dark grey, which provide much
less of a contrast than pure black or white. In audio terminology this is known as crosstalk. The greater the crosstalk, the greater the similarity between the two channels. This results in a smaller stereo picture (figure 1b), giving the sound a greater approximation to mono reproduction. Crosstalk can be caused in amplifiers by capacitive and/or inductive coupling between the wiring and layout of the two channels, or via a common supply line. Poorly designed balance controls are another common cause of crosstalk. In general, however, crosstalk produced in the amplifier is of secondary importance, since there is another point in the hi-fi chain which is much more critical. Furthermore it is possible to eliminate amplifier-induced crosstalk virtually completely provided one is willing to go to the expense of employing a separate supply for both channels (both in the pre-amp and power amp), separate pcbs etc., in short, with the exception of the case and mains plug, using completely separate mono amplifiers for each channel.

As mentioned, the weak link in the chain for crosstalk is not the amplifier, but the cartridge. In the particularly crucial range of frequencies between several hundred and several thousand Hz, channel separation is typically not much better than 25 dB. At higher frequencies this figure is even lower, however it is also less important. The reasons for the comparatively poor channel separation of pickup cartridges are fairly complex and would require a considerable explanation. Suffice to say that the cartridge is by far the worst culprit when it comes to producing crosstalk.

Phasing out' crosstalk

Ideally one would like to increase the channel separation of cartridges to around 40 dB (a figure of roughly 40 to 50 dB is the best that can be obtained in the actual cutting process of a disc and in the tracking performance of the stylus). However, improvements of this order now seem possible with a new approach by the Japanese Company, Denon (see figure 3). The circuit which, according to Denon, virtually eliminates pickup crosstalk is called the Phono Crosstalk Canceller (PCC). The unit, which is incorporated into a number of Denon amplifiers (there are plans to market the unit separately), is provided with four potentiometer controls, two of which are employed to (audibly) eliminate crosstalk from the left-hand channel to the right-hand channel, whilst the other two are set for minimum crosstalk from the right-hand to the left-hand channel. The adjustment procedure is performed with the aid of a test record.

The operation of the crosstalk canceller can best be illustrated with reference to the series of phasor diagrams in figure 4. If a voltage is summed with a second voltage which is of equal magnitude but in antiphase to the first, the result is of course zero voltage. The vectors representing two such voltages are shown in figure 4a, and the sum of these two vectors would be a third vector of zero length, i.e. no vector at all.

Assume now that two voltages A and B have a phase difference \(\varphi \), the corresponding vectors will also form an angle \(\varphi \) (4b); the sum of these two voltages will be represented by the vector C, and the difference (A-B) by the vector D.

If, in figure 4c, A represents the signal voltage of one stereo channel, whilst B represents the crosstalk voltage from the other channel, then it is possible to resolve B into a crosstalk component C, which will be in phase with the signal voltage, and a crosstalk component D, which will be 90° out of phase with the signal voltage. It is thus further possible to eliminate the crosstalk signal by introducing voltages C' and D' (which produce B') and summing these with the single channel information + crosstalk signal.

The same is equally true for figure 4d, where the crosstalk signal B is 180° out of phase with that of figure 4c.

Were the value of \(\varphi \) and the magnitude of the crosstalk vector constant, i.e.
independent of frequency, the suppression of crosstalk would be complete. Unfortunately, however, as a glance at figure 3 makes clear, that is not the case. Nonetheless, it is a fact that suppression of crosstalk is most important in the mid-range of frequencies, where both φ and the length of the crosstalk vector (channel separation in dB) are more or less constant. Thus the principle remains valid.

In practice there are pickup elements with a crosstalk voltage as shown in both figure 4c and figure 4d, which means that the C' and D' voltages not only must be independently variable, but must be available in both phase versions. For independent control of the C' and D' voltages, two potentiometers per channel are required, and since the crosstalk from one channel to another is not necessarily the same as that going the other way (in fact it generally is not), four potentiometers in all are needed.

Block diagram of the PCC-1000

Figure 5 shows the block diagram of the Denon Phono Crosstalk Canceller PCC-1000. Each channel comprises two 180° phase-shifters, one 90° phase-shifter, two single-ganged potentiometers with fixed, earthed centre taps, and a summing circuit. The wiper voltages of the potentiometers in each channel are fed to the summing circuit of the other channel. The fixed, earthed centre taps ensure that the compensation voltages are available in both polarities depending upon the type of pickup being used.

Circuit

The circuit diagram of the PCC-1000 is shown in figure 6. The unit is connected between the tape output and tape input (monitor input) of the preamp. Since the preamp tape sockets are no longer available for their original application, the PCC-1000 itself provides the necessary connections. Switch S2 is the new tape monitor switch. Switch S3 selects (1) 'left channel only', (2) 'right channel only', and (2) 'normal', (i.e. stereo). The bypass switch for the unit is S1.

We have our way back from the output transistors TR5, 7 and 9 (6,8 and 10) plus accompanying passive components form the summing amplifier to which the three input signals (see figure 5) are fed via R29, R31 and R33 (R30, R32, R34). The junction of these resistors is at virtual earth.

The voltage at the collector of TR1 (TR2) is in antiphase with the input voltage. The wiper voltage of VR1 (VR2) determines the amplitude and phase (polarity) of the compensation voltage C' (see figures 4c and 4d). The RC network C7/R15 (C8/R16) introduces a phase shift of 90°, whilst TR3 again causes a 180° phase shift between in- and output voltage. The level and polarity of the D' compensation voltage is determined by the setting of VR3 (VR4).

That basically is all that there is to the circuit. The remaining components are part of the power supply stage.

In conclusion

The PCC-1000 crosstalk suppressor from Denon, is certainly an interesting and potentially valuable idea. However the question is whether the improvement in channel separation is matched by an equal improvement in the quality of the resultant sound. The problem of evaluating hi-fi equipment is fraught with the dangers of subjectivity, and it has not been unknown for a reviewer to remark upon the better stereo imaging of a particular pickup for example, when that pickup in fact had a poorer channel separation than others which were under review. This is a subject which we hope to come back to in the future. At least one can say that for anyone interested in 'state-of-the-art' hi-fi, the crosstalk canceller is definitely well worth a listen.
robust lab power supply

An essential feature of any electronics enthusiast's lab is a reliable power supply unit. The basic requirements for such a unit are that it provides a fully stabilised continuously variable output voltage and should be fully protected against eventual fault conditions such as output short circuits. The circuit described here meets all the above points, is both simple and inexpensive, and should provide years of trouble-free service.

Until only a few years ago, power supply units almost exclusively employed discrete regulator circuits. However, with the advent of cheap universal precision voltage regulator ICs, it has become possible for the amateur to build an inexpensive PSU enjoying the specifications which previously were the preserve of expensive professional equipment.

The basic function of a voltage regulator is twofold. Firstly, to maintain a constant output voltage in spite of variations in the input voltage (i.e. the mains). Its performance in this respect is termed line regulation and is expressed as the percentage change in the input voltage which is passed on to the output voltage. Thus, with a line regulation of 0.1% - the figure for the circuit described here - a change of 10 V in the mains supply will produce a variation of not more than 0.1% of 10 V = 0.01 V in the output voltage of the regulator circuit. The second function of a regulator is to maintain a constant output voltage despite variations in the current drawn by the load. Load regulation is expressed as the percentage change in the output voltage for a specific change in the output load current (or when the load current is varied over its complete range). Thus, in this circuit the output voltage will not vary by more than 1% for fluctuations of up to 5 A in the current drawn by the load.

Double stabilisation

As can be seen from the block diagram of the PSU (see figure 1), the design of the circuit is slightly unusual in that it incorporates a pre-stabiliser stage between the unregulated supply and the output regulator proper. There are several reasons for adopting this approach. Firstly, the actual stabiliser does not have to cope with large line voltage variations, whilst secondly, and more importantly, the dissipation of the circuit is spread over two stabilisers. Finally, the pre-stabiliser is required to limit the input voltage of the regulator IC used in the circuit.

Apart from the preliminary stage, the design of the PSU is fairly conventional:

mains step-down transformer plus rectifier, smoothing capacitor, the two series-connected regulator stages and finally, a meter circuit to measure the output voltage/current. The first stabiliser circuit is provided with current limiting, whilst the second is protected against short-circuits and thermal overload. In view of the fact that, as we shall see, the supply is also protected against both negative voltages and large positive voltage transients, the circuit is virtually 'idiot-proof' and definitely merits the accolade 'robust'.

Circuit

The complete circuit diagram of the PSU is shown in figure 2. Two versions of the circuit — one designed to supply a maximum of 5 A, and a simpler version which provides 2.5 A — are presented. In both cases the output voltage can be varied between 5 and 20 V with the aid of potentiometer P1. The differences between the two versions of the circuit are detailed in table 1.

What may initially appear to be a rather curious problem with regulator circuits is the fact that the lower the output voltage, the greater the dissipation. The reason for this is not difficult to explain however, since the less power 'dissipated' in the form of an output voltage, the more power is 'left over' and hence must be dissipated in the output transistors of the regulator circuit itself. Thus it only makes sense to limit the input voltage of the circuit whenever only low output voltages are required. To this end the transformer is provided with both 12 V and 24 V secondary windings which can be switched with the aid of S2. In view of the lower current, the dissipation of the 2.5 A version of the circuit is not a problem, hence the secondary voltage of the transformer can safely be left at 24 V.

The rectifying and smoothing stages of the circuit are completely conventional. The presence or absence of the second smoothing capacitor, C2, determines the size of the ripple voltage at the output.
Figure 1. Block diagram of the 'robust' lab PSU.

Figure 2. Complete circuit diagram. Two versions of the circuit are possible: one provides a maximum output current of 5 A, the other is a simpler version with a maximum output of 2.8 A.

can be omitted; it must be included in the 5 A version for the specifications listed above to apply.
The pre-stabiliser stage is formed by T1 and T2 which are connected as a conventional series stabiliser pair. The reference voltage is derived from zener diode D1. The circuit only functions as a stabiliser when S2 is in position 'a', however, since only then is it necessary to limit the input voltage of the output regulator or to split the dissipation of the circuit over two stages. Assuming that S2 is in position 'a', the voltage at point B will be limited to between 25 and 26 V (approx).
Current limiting is provided by T3 and R5. When the voltage across R5 exceeds
Parts list

Resistors:
- R1, R2, R4 = 1 k
- R3 = 100 Ω
- R5 = 68 kΩ (see text)
- R6 = 0.03 Ω (see text)
- R7 = 4.7 kΩ
- R8 = 20 kΩ, 1%
- P1 = potentiometer, 22 kΩ (25 kΩ)
- P2 = preset potentiometer, 220 Ω (250 Ω)

Capacitors:
- C1 = 4700 µF/40 V
- C2 = 4700 µF/40 V (see text)
- C3, C4, C5 = 1 µF/40 V tantalum
- C6 = 100 µF/40 V

Semiconductors:
- B1 = see table 1
- D1 = zener diode, 27 V/500 mW
- D2 = LED
- D3 = 1N5406
- D4 = see table 1
- D5 = 1N4007
- T1 = BD 137, BD 139
- T2 = 2N3055
- T3 = BC 107C, BC 547C or equivalent
- IC1 = µA 78 HG (Fairchild)

Miscellaneous:
- F1 = fuse, see table 1
- T1 = mains transformer, see table 1
- S1, S4 = DP switch
- S2 = SP switch, see table 1
- S3 = SP switch, 5 A
- L1 = neon lamp with built-in current-limiting resistor.

Figure 3. The printed circuit board and component layout (EPS 79034). Since a relatively large number of components must be cooled, not all of the circuit can be accommodated on the board.

Figure 4. Front panel design for the PSU (EPS 79034-F).
approx. 0.7 V, T3 turns on, turning off T1 and T2, and lighting LED D2. With the component values shown, the current limit comes into operation at approx. 100 mA, although this can be varied by altering the value of the current sense resistor R5. One should bear in mind that the dissipation of this resistor will be a maximum of 0.7 times the current limit in amps. The maximum current should not be allowed to exceed 2 A, since at that stage, should a short-circuit occur at the output, something like 60 W is already going to be dissipated in T2.

The current limit facility can be disabled by closing S3, when the circuit will simply be short-circuit proof, the current being limited in such an eventuality to the maximum current of 5 A. The output voltage regulator is formed by the IC type µA 78HG from Fairchild. This device provides a stabilised output voltage which can be continuously varied between 5 and 24 V and which in normal use is virtually impossible to damage. The IC also provides short-circuit and thermal overload protection.

The principal specifications of the µA 78HG are listed in table 2, while pinout details for the four-lead TO-3 package are shown in figure 2.

The output voltage is set by means of potentiometer P1, which together with R7 forms a variable voltage divider. The IC controls the output voltage such that the voltage at the 'control' input (pin 3), which is derived from the voltage divider, is always 5 V. D3 and D4 are included to protect the IC from output voltages which might exceed the input voltage, a situation which can occur when using the PSU to charge batteries for example. In the 2.5 A version of the circuit one of the diodes can be omitted.

D5 protects the circuit against any negative voltage transients which might find their way to the output of the circuit.

The PSU employs a single meter to display both voltage and current, and switch S4 selects one mode or the other. R6 is a shunt resistor for the current measurement and the meter scale can be calibrated by means of P2. Calibration for voltage measurements is not required. Instead of a moving coil meter it is possible to use the universal digital meter published in the January issue (Elektor 45), in which case some component values need to be changed. Resistors R7 and R8 of the digital meter should be changed for a wire link and a 1 k 1% resistor respectively, while in the PSU circuit R8 should be altered to 19 k (18 k and 1 k in series, both 1%).

The above meter can be powered directly from point A of the PSU circuit.

Construction
To ensure a long and trouble-free operating life it is worthwhile spending
Table 1.

Differences between 2.5 and 5 A versions of the PSU

<table>
<thead>
<tr>
<th></th>
<th>2.5 A</th>
<th>5 A</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>250 mA fuse</td>
<td>500 mA fuse</td>
</tr>
<tr>
<td>Tr1</td>
<td>2 x 12 V/3.5 A</td>
<td>2 x 12 V/7 A</td>
</tr>
<tr>
<td>S2</td>
<td>transformer</td>
<td>transformer</td>
</tr>
<tr>
<td>B1</td>
<td>omitted</td>
<td>SP switch, 7 A</td>
</tr>
<tr>
<td>D4</td>
<td>omitted</td>
<td>1N5406</td>
</tr>
</tbody>
</table>

Table 2.

Specifications of µA 78HG

- max. dissipation: 50 W (at 25 °C)
- max. input voltage: 40 V
- max. voltage difference between in- and output: 25 V
- max. current: 7 A
- control voltage: 4.8 V...5.2 V
- load regulation: < 1%
- line regulation: < 1%
- quiescent current: < 10 mA
- ripple suppression: > 60 dB
- noise voltage: 75 µV

a certain amount of attention on the constructional details of the PSU. The printed circuit board for the project is shown in figure 3. However, since a comparatively large number of components must be cooled, most of these are mounted off-board. Particular attention must be given to the cooling arrangements for the bridge rectifier, B1, transistors T1 and T2, and the voltage regulator, IC1. In the case of the IC, one must reckon with a dissipation of something like 50 W, hence a beefy heat sink is a must.

Similarly, adequate precautions should be taken with T2, since it will dissipate anything up to 60 W. The bridge rectifier and T1 are not quite such a problem and could be cooled by, for example, mounting them on the case. However, do not forget to electrically insulate the components being cooled (mica washers and silicon grease) – with the possible exception of IC1 which may be mounted without insulation.

The shunt resistor, R6, will have to be self-wound. The simplest method of doing this is to wind 36 cm of 0.6 mm (24 s.w.g.) diameter enamelled copper wire on a 1 W resistor (e.g. 10 k). The inductance of such a home-made resistor can be neglected in this type of application. Care should be taken to ensure that the connecting wire is rated to carry the full 5 A the circuit can supply. Wiring details are shown in figure 5. Note that in contrast to normal usage the case should not be connected to circuit earth, but rather is earthed via a separate socket. In this way the circuit can be used for both positive and negative voltages.

The only component in the circuit requiring initial adjustment is P2, which is used to calibrate the meter for current. The simplest way of doing this is to set the PSU for, say, 10 V out and then load the circuit with 45 Watt car headlamp bulb, with an ammeter in series (full scale deflection at least 4 A). With S4 in position 'I' the meter deflection can be adjusted until it shows the same reading. A slightly less reliable method is to inhibit the circuit's current limit facility, and with the output short-circuited, adjust P2 for a full-scale deflection (corresponding to a current of 5 A).

Operation

Using the PSU is quite straightforward, the only problem which might present itself is switch S2 (which, of course, is only present in the 5 A version of the circuit). As was already mentioned, this switch should be set to position 'b' for high-output-current low-output-voltage applications. Should the switch be left in position 'a' in such circumstances, the thermal shutdown facility of the IC will quickly come into effect, since the device will be dissipating more than the permitted 50 W. The dissipation is reduced to acceptable proportions by changing over the position of the switch, with the result that the maximum output voltage is limited to approx. 12 V. The graph in figure 6 illustrates the relationship between output voltage and current for the two positions of S2.
A ring modulator is a circuit which was originally employed in telecommunications systems for the modulation and detection of transmission signals. More recently however, the ring modulator has found an interesting application in the field of electronic music and is in fact now a common feature in many synthesizers.

A ring modulator is basically a four quadrant multiplier, that is to say, a circuit which will multiply two input voltages, regardless of whether they are positive or negative and ensure that the product voltage is of the correct polarity. Thus a positive voltage multiplied by a negative voltage will yield a negative voltage, a negative voltage times a negative voltage will give a positive voltage, and so on.

The question is: why is such a circuit of interest to the electronic music enthusiast? The answer can be found by considering the following mathematical expression for the product of two sinewaves:

\[\sin \alpha \cdot \sin \beta = \frac{1}{2} \cos(\alpha - \beta) - \frac{1}{2} \cos(\alpha + \beta). \]

Since a cosine is simply a sinewave with a 90° phase shift, it can be seen that multiplying two sinewaves results in two new sinewave signals whose frequencies are the sum and difference respectively of the two original signals. Note that this is only true for sinewave signals and not for other types of waveform. However the same effect will be produced by combinations of sinewaves. Thus, for example, if a combination of two sinewaves is multiplied with a third sinewave, each of the constituent sinewaves in the original signal will produce its own sum and difference products. The multiplication of two sinewave input signals is illustrated in the oscilloscope photo of figure 1. The sinewave of the upper trace is multiplied with a second sinewave of higher frequency to produce the product waveform shown on the lower trace.

'Klangs'

The most significant feature of the ring modulator is its ability to exploit the harmonic relationship of different notes. This can best be explained with the aid of a further example. Assume that we feed two sinewave signals with frequencies of 2.5 and 4.5 kHz respectively to one of the ring modulator inputs. The ratio of these two frequencies is 5:9, which means that, in musical terms, the resultant note is roughly equivalent to a lower seventh (the actual frequencies are somewhat on the high side, however they are only chosen to illustrate an example). If now a third sinewave with a frequency of 500 Hz is fed to the other input of the ring modulator, what will appear at the output? The 2.5 kHz signal multiplied with the 500 Hz tone produces two new signals of 2 and 3 kHz respectively. Similarly, the 4.5 kHz and 500 Hz signals will produce two new signals of 4 and 5 kHz. Thus at the output of the ring modulator will be four signals with frequencies of 2, 3, 4 and 5 kHz, i.e. a major chord. The musical relationship of the lower seventh has therefore been transformed into a different musical relationship, that of a major chord.

However, the above example is not typical, since it will be the exception rather than the rule that musically related frequencies at the input of the ring modulator will also produce a musically coherent chord at the output. In the vast majority of cases the harmonic relationship of the sum and difference signals produced at the output of the ring modulator will be uncorrelated, resulting in a dissonant, unmusical sound.

This is particularly true if, instead of sinewaves, other types of waveform are used as input signals. Figure 2 illustrates what happens when a sinewave is multiplied with a squarewave input. It is well known that non-sinusoidal periodic waveforms can be considered as consisting of a sinusoidal fundamental with the frequency of the signal in question, plus a number of harmonics of the fundamental, i.e. sinewaves whose frequency are a multiple of the fundamental frequency. Thus, for example, a sawtooth waveform of 1 kHz consists of sinewaves of 1 kHz, 2 kHz, 3 kHz... etc. The character of the resultant note depends upon the relative strength of the constituent harmonics. If a sawtooth is fed to one input of a
Ring Modulator

A ring modulator and a pure sinewave of, e.g. 300 Hz, is fed to the other input, then each harmonic of the sawtooth will be multiplied by the 300 Hz sinewave, and a series of signals with frequencies of 0.7 kHz, 1.3 kHz, 1.7 kHz, 2.3 kHz, 2.7 kHz, 3.3 kHz etc. will be produced at the output. Thus the ring modulator has converted the original 1 kHz sawtooth and the 300 Hz sinewave into a complex note composed of musically unrelated harmonics. If now the 300 Hz sinewave is replaced by a second sawtooth signal, the harmonic structure of the resulting output signal is even 'denser' and more complex. At the lower end of the spectrum alone, the output signal will contain the following frequencies: 100, 300, 400, 500, 600, 700, 800, 900, 1100, 1200, 1300, 1400, 1500, 1600 and 1700 Hz. Each of these tones will have a characteristic amplitude, with particular frequencies tending to predominate whilst others are relatively attenuated. Due to its extremely complex harmonic structure, the timber of the resultant signal resembles that of a large bell or gong, or the sound of metal striking metal (hammer on an anvil etc.). This type of percussive effect is called a *klang*, and is frequently used by composers of electronic music.

The potential of the ring modulator can best be exploited if both input signals are varied in frequency (e.g. modulated by a low frequency signal). The result is sounds which exhibit tremendous variations in both pitch (as far as one can still talk of the 'pitch' of such sounds) and tone colour, and which run the gamut of tonal possibilities between pure harmonics and the shirkest of dissonances. Extremely interesting effects can also be obtained by combining 'normal' sounds with a noise signal, by using the ring modulator in conjunction with various types of filter, and by using a combination of several ring modulators. The well-known modern composer Stockhausen once wrote a work for Hammond organ and four ring modulators!

Frequency Doubler

The ring modulator can also be employed in more 'conventional' musical applications as a frequency doubler or octave shifter (doubling the frequency is of course equivalent to shifting the pitch of the signal up an octave). To achieve this effect one simply feeds the same signal to both inputs of the ring modulator. It is clear that the difference frequency of the two input signals will in this case be 0 Hz, i.e. there will be no difference signal at the output, whilst the sum signal will have double the frequency of the original input signal(s). If the ring modulator is used as a frequency doubler for non-sinusoidal and polyphonic signals considerable inter-modulation between the constituent harmonics will produce an interesting range of effects. A further possibility is to process one of the two input signals through a phasing or echo unit. Finally, it is also possible to use the ring modulator in a somewhat less conventional mode, namely as a voltage controlled amplifier. The control voltage is fed to one input, whilst the signal to be modulated is fed to the other.

The Ring Modulator as an Instrument

The above remarks give only a brief outline of the 'musical' applications of the ring modulator. However it is plain that, as an instrument, it is ideally suited for those interested in the field of experimental music, the persona looking for totally new tonal effects. The ring modulator is a 'difficult' instrument, which, if its capabilities are to be exploited to the full, demands a considerable degree of skill and knowledge on the part of the operator. Nonetheless, the ring modulator is a basic feature of most reasonably-sized synthesizers, as well as being a common accessory in the equipment of instrumentalists, keyboard players and other instrumentalists.

The Ring Modulator is Not a Ring Modulator

After the foregoing — of necessity — somewhat lengthy digression, we can now concentrate on the technical aspect of the circuit. First, however, it is worth clearing up a slight confusion which unfortunately exists regarding the true name of the circuit in question.

The term 'ring modulator' in fact describes a particular type of circuit, which happens to function as a four quadrant multiplier (at least as far as AC voltages are concerned), and in the early years of electronic music was used to denote specifically this effect. In the intervening period, however, new and better circuits have been designed to accomplish the same end, and these are now used almost exclusively when it comes to musical applications. The name ring modulator remained, however, since most musicians are interested only in what comes out of the 'black box' and not what it contains.

A more accurate name for the type of multiplier used in the majority of modern ring modulator circuits is 'double-balanced modulator'. This is a somewhat delicate circuit, consisting of a combination of voltage-controlled current sources. Fortunately the complete circuit of a double-balanced modulator is now available in IC form, so that all that is required to construct a 'ring modulator' suitable for musical applications is the addition of a few ancillary components.

Circuit

The block diagram of the Elektor ring modulator is shown in figure 3. It will be seen that the ring modulator (shown marked with an X sign) has three available inputs. Both the A and B inputs accept signal levels of up to approximately 1.5 volts peak to peak and are therefore compatible with the Elektor Formant and other synthesizers.

Input C has a preamplifier with a
maximum input level of 10 mV and is sufficiently sensitive for the majority of guitar pickups and microphones.

An additional feature of this circuit is that the B and C inputs can be used simultaneously as they are mixed prior to the input of the ring modulator IC.

A further addition to the circuit (although not a functional part of the ring modulator) utilises two op-amps, A2 and A4, to form a peak rectifier and amplifier providing an envelope follower circuit which has an output level of up to 10 volts peak to peak. This gives a waveform output which is relative to the envelope of the low level instrument input (input C) which may be used in conjunction with synthesisers.

The complete circuit diagram of the ring modulator is shown in figure 4. The heart of the circuit is IC1, the double-balanced modulator, which is responsible for multiplying the input signals. The IC used is the LM 1496N from National (or MC 1496P from Motorola). A number of external resistors are required for the IC to function satisfactorily. It is necessary to limit the amplitude of the two output signals, otherwise there is the danger that the input signals will not be sufficiently suppressed and will appear at the output. For this reason the input signals are held to a reasonable level (max. approx. 150 mVpp) with the aid of the dividers networks R1/R3 and R8/R11. This has the effect of ensuring that the input signals are approx. 50 dB down at the output. The suppression can be optimised by means of adjusting potentiometers P2 and P3.

R6 and R7 set the correct DC offset voltages at pins 8 and 10 of the IC, whilst the remaining associated resistors round the IC ensure the correct DC bias currents. The output voltage is tailored to match the standard Formant level of 1.5 Vpp. Op-amp A3 functions simply as an output buffer.

The C input, which uses op-amp A1 as a pre-amplifier stage, has been designed for guitar pickups, microphones etc. The input level to this stage is adjustable by means of P1 while the output is fed to the ring modulator via R9 and also to the envelope follower via C5. Diodes D1 and D2 are included to clamp excessively large voltages at this point. The remaining two op-amps, A2 and A4, are used in the envelope follower. Together D3, C6 and A2 form the peak rectifier. The rectified signal is then fed through a lowpass filter with a turnover frequency of 10 Hz. Finally, op-amp A4 ensures that the output voltage of the envelope

Figure 4. Complete circuit diagram of the ring modulator. The actual process of 'ring modulation' is carried out in the double-balanced modulator IC1.

Figure 5. Printed circuit board for the circuit of figure 4 (EPS 79040).
Parts list:

Resistors:
R1, R8, R9 = 27 k
R2, R5 = 12 k
R3, R4, R11, R13 = 2k7
R6, R7 = 1k5
R10, R12, R14 = 6k8
R15, R16 = 1k2
R17 ... R20 = 15 k
R21, R33 = 470 Ω
R22, R24 = 5k6
R23 = 820 k
R25 = 18 k
R26, R27, R28 = 68 k
R29 = 680 k
R30 = 220 k
R31 = 10 k
R32 = 47 k
P1 = potentiometer, 10 k log
P2 = preset potentiometer, 220 Ω
(250 Ω)
P3 = preset potentiometer, 500 Ω

Capacitors:
C1 = 100 µ/16 V
C2, C3 = 120 n
C4 = 180 n
C5 = 22 n
C6, C7 = 220 n
C8 = 22 n
C9, C10 = 470 n

Semiconductors:
IC1 = LM 1496N (National) or
 MC 1496P (Motorola)
IC2 = TL 084
D1 ... D3 = DUS

follower can vary between approximately 0 and 10 volts.

Construction and setting-up
The circuit can be mounted on the p.c.b. shown in figure 5. In addition to the MC 1496P, a further equivalent for the LM 1496N exists, namely the S 5596 from Signetics. Unfortunately, however, this IC has a different pin-out, and hence cannot be used with the p.c.b. of figure 5.

The circuit requires supply voltages of +15 V and -15 V. Current consumption is extremely low, being in the region of a few dozen milliamps.

Setting up the circuit is quite straightforward: an input signal is fed to input A and potentiometer P3 is adjusted such that as little of the input signal as possible can be heard at the output. The same procedure is then carried out for input B and potentiometer P2. Finally, the entire setting-up procedure should be repeated, whereupon the circuit is ready for use, and the experimental musician can embark upon what will hopefully be a fruitful 'voyage' of musical discovery...
variable pulse generator

Many digital applications require the use of a pulse generator of which not only the frequency, but also the duty-cycle can be varied. A problem with certain simple variable pulse generators is that altering the duty-cycle also affects the frequency of the output signal. The circuit described here, however, which uses only a handful of components, is free from this drawback; both frequency and duty-cycle are independently variable. The frequency range extends from approx. 1 kHz to 20 kHz, whilst the duty-cycle can be varied from almost 0 to 100%.

The complete circuit diagram of the variable pulse generator is shown in figure 1. As can be seen, the circuit is extremely simple indeed. The pulses are generated by an astable multivibrator round N1. This provides a symmetrical squarewave (duty-cycle = 50%), the frequency of which can be varied by means of P1a. The squarewave is cleaned up by N2 and is available via an extra external output.

To allow the duty-cycle to be varied without affecting the frequency of the squarewave, the circuit employs an integrating network (P1b/R2/C2) and a comparator (IC1). The RC-constant of the integrating network (C2 = 1/6 \cdot C1) is chosen such that the voltage across C2 may vary between approx. 20 and 80% of the supply voltage, U_p. Whenever this voltage exceeds the reference voltage on the inverting input of the comparator, the output of the latter changes state. The result is therefore a squarewave signal (U_X) whose duty-cycle is determined by the reference voltage (U_{ref}) of the comparator. This process is clearly illustrated in the timing diagram of figure 2. By varying the voltage at the inverting input of the comparator it is therefore possible to adjust the duty-cycle of the squarewave as desired without affecting the frequency.

There now remains the question of what happens to the duty-cycle if the frequency of the squarewave is varied. Normally the duty-cycle would be influenced by the frequency change, however due to the use of a twin-ganged potentiometer (P1a/P1b), in the circuit shown here, the RC-constant of the integrating network will vary in sympathy with that of the multivibrator. If the frequency, f, of the multivibrator is increased to x\cdot f, the period of the resulting squarewave will be reduced by a factor x. However since the RC-constant of the integrating network is likewise reduced by a factor x, the duty-cycle of the squarewave at the output of the comparator will remain unchanged. It is not difficult to see that altering the RC-constant of the integrating network will not affect the shape of the charge curve of C2, so that the pulse diagram of figure 2 is also valid for any frequency x\cdot f. The ratio T1/T2 and thus the duty-cycle (= T1/T2 \times 100%) is therefore constant.

The values of R3, R4 and P2 are chosen

K. Kraft

Figure 1. The circuit of the variable pulse generator employs only two ICs, yet both the frequency and duty-cycle are independently variable.

Figure 2. This timing diagram illustrates how the duty-cycle of the output signal is determined by the reference voltage of the comparator (U_{ref}). Furthermore, by varying the RC-constant of the integrating network in sympathy with that of the multivibrator it is possible to make the duty-cycle independent of the frequency.
such that the reference voltage at the
inverting input of IC1 may vary between
13 and 87% of the supply voltage. As
already mentioned, the voltage across
C2 can vary between 20 and 80% of
supply. Thus it is possible to vary the
duty-cycle of the output signal between
virtually 0 (i.e. no output signal) and
100% (DC voltage).
The two remaining Schmitt-trigger gates
of IC2 are used at the output, N3 to
further square up the output signal and
N4 to provide an inverted version. Thus
if a squarewave with a duty-cycle of
30% is present at the output of N3, the
output of N4 will provide a squarewave
of identical frequency but with a duty-
cycle of 70%.
With the component values as shown in
figure 1, the frequency range of the
circuit extends from approx. 1 kHz to
20 kHz.
The frequency range can be altered if
desired; the essential parameters of
the circuit are given by the following
equations:
\[C1 = 6 \times C2 \]
\[P1a = P1b \text{ and } R1 = R2 \]
\[f = \frac{1}{(P1a + R1) \times C1 \times 0.4} \]
It is also possible to control the ampli-
tude of the output signal by connecting
a 22 kΩ potentiometer between the
output of N3 or N4 and ground.
The output signal can then be taken
from the wiper of the potentiometer.
The supply voltage for the circuit need
not necessarily be stabilised, however if
any sort of demands are to be placed
upon the stability of the frequency,
amplitude or duty-cycle, it is best to
employ a voltage regulator. Since the
entire circuit consumes no more than
roughly 20 mA, a regulator from the
78L05 series is the obvious choice. De-
pending upon the supply voltage, the
78L05, 78L06, 78L08, 78L09 and
78L010 should prove suitable.

Elektor is promoting the first world-
wide circuit and design idea competition
for electronics enthusiasts with over £10,000 worth of electronic equipment
to be won. It is the intention that this
competition should stimulate elec-
tronics as a hobby on a world-wide
scale, by the resulting exchange of cir-
cuit ideas. Entries are not limited to
fully-developed and tested circuits:
original design ideas, that could be im-
plemented in circuits (given time and
sufficient experience), can also be
entered. Obviously, both circuits and
design ideas must be original.

Complete circuits
Entries should be interesting, original
circuits that can be built for less than
£20.00 - not counting the case and
printed circuit board. Circuits used in
commercially available equipment, de-
scribed in manufacturer's application
notes, or already published are not
considered 'original'.
The complete circuit should be sent in,
together with a parts list, a brief expla-
nation of how it works and what it is
supposed to do, a list of the most im-
portant specifications and a rough esti-
mate of component cost. The latter
can be based on retailer's advertisements.

A jury, consisting of members of the
editorial staffs for the English, German
and French issues of Elektor and the
Dutch edition, Elektuur, will judge the
entries according to the criteria listed
above. The best designs will be published
in the four Summer Circuits issues, with
a combined circulation of over 250,000
copies. All entries included in this final
round will be rewarded with an initial
‘fee’ of £60.00.

Design ideas
Readers who cannot submit a complete
circuit (for lack of time, know-how or
hardware) may enter an interesting and
original design idea. However, the same
basic rule holds: the idea should be for a
feasible circuit that can be built for an
estimated component cost of less than
£20.00. The idea should be described as
fully as possible. Preferably, a block
diagram and - if at all possible – a
basic (untested) circuit should be in-
cluded. The jury will select the best
ideas for inclusion in the final round. These ideas will be rewarded with a 'fee'
of £20.00.

The final round
The readers of Elektor and its sister
publications will select the winners!
This is where the half-a-million-or-more
readers of the Summer Circuits issues
come in (yes, we know that each copy is
read, on average, by 2.6 people . . .).
The readers are requested to select the
10 best circuits from those published.
Everybody who co-operates in this final
vote may also win a prize.

The prizes
Over £10,000 worth!
The ten entries selected by our readers
will receive a total of £10,000 worth of
prizes. Dream prizes for any enthusiastic
electronics hobbyist!

The closing date for the competition is
Entries should be sent to:
Elektor Publishers Ltd.,
Elektuur house,
10 Longport,
Canterbury, CT1 1PE,
Kent, U.K.
Both the envelope and the entry should
be clearly marked 'Eurotronics circuit'
or 'Eurotronics design idea'.

Closing date:

General conditions
- Members of the Elektor/Elektuur
 staff cannot enter the competition.
- Any number of circuits and/or design
 ideas may be submitted by any
 person.
- Entries that are not included in the
 final round will be returned, pro-
 vided a stamped, addressed envelope
 is included.
- The decision of the jury is final.
Wherever possible in Elektor circuits, transistors and diodes are simply marked 'TUP' (Transistors, Universal PNP), 'TUN' (Transistor, Universal NPN), 'DUG' (Diode, Universal Germanium) or 'DUS' (Diode, Universal Silicon). This indicates that a large group of similar devices can be used, provided they meet the minimum specifications listed in tables 1a and 1b.

<table>
<thead>
<tr>
<th>type</th>
<th>Uceo max</th>
<th>Ic max</th>
<th>hfe min</th>
<th>Ptot max</th>
<th>ft min</th>
</tr>
</thead>
<tbody>
<tr>
<td>TUN</td>
<td>20 V</td>
<td>100 mA</td>
<td>100</td>
<td>100 mW</td>
<td>100 MHz</td>
</tr>
<tr>
<td>TUP</td>
<td>20 V</td>
<td>100 mA</td>
<td>100</td>
<td>100 mW</td>
<td>100 MHz</td>
</tr>
</tbody>
</table>

Table 1a. Minimum specifications for TUP and TUN.

<table>
<thead>
<tr>
<th>type</th>
<th>Umax</th>
<th>Ic max</th>
<th>IF max</th>
<th>hfe</th>
<th>Ptot max</th>
<th>Cmax</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUS</td>
<td>25 V</td>
<td>100 mA</td>
<td>100 mA</td>
<td>1 µA</td>
<td>250 mW</td>
<td>5 pF</td>
</tr>
<tr>
<td>DUG</td>
<td>20 V</td>
<td>35 mA</td>
<td>100 mA</td>
<td>100</td>
<td>250 mW</td>
<td>10 pF</td>
</tr>
</tbody>
</table>

Table 1b. Minimum specifications for DUS and DUG.

Table 2. Various transistor types that meet the TUN specifications.

<table>
<thead>
<tr>
<th>TUN</th>
<th>NPN</th>
<th>PNP</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC 107</td>
<td>BC 208</td>
<td>BC 384</td>
</tr>
<tr>
<td>BC 108</td>
<td>BC 209</td>
<td>BC 407</td>
</tr>
<tr>
<td>BC 109</td>
<td>BC 237</td>
<td>BC 408</td>
</tr>
<tr>
<td>BC 147</td>
<td>BC 238</td>
<td>BC 409</td>
</tr>
<tr>
<td>BC 148</td>
<td>BC 239</td>
<td>BC 413</td>
</tr>
<tr>
<td>BC 149</td>
<td>BC 317</td>
<td>BC 414</td>
</tr>
<tr>
<td>BC 171</td>
<td>BC 318</td>
<td>BC 547</td>
</tr>
<tr>
<td>BC 172</td>
<td>BC 319</td>
<td>BC 548</td>
</tr>
<tr>
<td>BC 173</td>
<td>BC 347</td>
<td>BC 549</td>
</tr>
<tr>
<td>BC 182</td>
<td>BC 348</td>
<td>BC 582</td>
</tr>
<tr>
<td>BC 183</td>
<td>BC 349</td>
<td>BC 583</td>
</tr>
<tr>
<td>BC 184</td>
<td>BC 382</td>
<td>BC 584</td>
</tr>
<tr>
<td>BC 207</td>
<td>BC 383</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Various transistor types that meet the TUP specifications.

<table>
<thead>
<tr>
<th>TUP</th>
<th>BC 167</th>
<th>BC 253</th>
<th>BC 352</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC 158</td>
<td>BC 261</td>
<td>BC 415</td>
<td></td>
</tr>
<tr>
<td>BC 177</td>
<td>BC 262</td>
<td>BC 416</td>
<td></td>
</tr>
<tr>
<td>BC 178</td>
<td>BC 263</td>
<td>BC 417</td>
<td></td>
</tr>
<tr>
<td>BC 204</td>
<td>BC 307</td>
<td>BC 418</td>
<td></td>
</tr>
<tr>
<td>BC 205</td>
<td>BC 308</td>
<td>BC 419</td>
<td></td>
</tr>
<tr>
<td>BC 206</td>
<td>BC 309</td>
<td>BC 512</td>
<td></td>
</tr>
<tr>
<td>BC 212</td>
<td>BC 320</td>
<td>BC 513</td>
<td></td>
</tr>
<tr>
<td>BC 213</td>
<td>BC 321</td>
<td>BC 514</td>
<td></td>
</tr>
<tr>
<td>BC 214</td>
<td>BC 322</td>
<td>BC 557</td>
<td></td>
</tr>
<tr>
<td>BC 251</td>
<td>BC 360</td>
<td>BC 558</td>
<td></td>
</tr>
<tr>
<td>BC 252</td>
<td>BC 361</td>
<td>BC 559</td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Various diodes that meet the DUS or DUG specifications.

<table>
<thead>
<tr>
<th>DUS</th>
<th>DUG</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA 127</td>
<td>BA 318</td>
</tr>
<tr>
<td>BA 217</td>
<td>BAX13</td>
</tr>
<tr>
<td>BA 218</td>
<td>BAY61</td>
</tr>
<tr>
<td>BA 221</td>
<td>1N914</td>
</tr>
<tr>
<td>BA 222</td>
<td>1N4148</td>
</tr>
<tr>
<td>BA 217</td>
<td></td>
</tr>
</tbody>
</table>

Table 5. Minimum specifications for the BC107, -109 and BC177, -179 families (according to the Pro-Electron standard). Note that the BC179 does not necessarily meet the TUP specification (Ic,max = 50 mA).

<table>
<thead>
<tr>
<th>NPN</th>
<th>PNP</th>
<th>Uceo max</th>
<th>Ptot max</th>
<th>ft min</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC 107</td>
<td>BC 177</td>
<td>45 V</td>
<td>300 mW</td>
<td>150 MHz</td>
</tr>
<tr>
<td>BC 108</td>
<td>BC 178</td>
<td>45 V</td>
<td>300 mW</td>
<td>150 MHz</td>
</tr>
<tr>
<td>BC 109</td>
<td>BC 179</td>
<td>45 V</td>
<td>300 mW</td>
<td>150 MHz</td>
</tr>
<tr>
<td>BC 147</td>
<td>BC 157</td>
<td>6 V</td>
<td>50 mA</td>
<td>100 MHz</td>
</tr>
<tr>
<td>BC 148</td>
<td>BC 158</td>
<td>6 V</td>
<td>50 mA</td>
<td>100 MHz</td>
</tr>
<tr>
<td>BC 149</td>
<td>BC 159</td>
<td>6 V</td>
<td>50 mA</td>
<td>100 MHz</td>
</tr>
<tr>
<td>BC 207</td>
<td>BC 204</td>
<td>100 mA</td>
<td>300 mW</td>
<td>130 MHz</td>
</tr>
<tr>
<td>BC 208</td>
<td>BC 205</td>
<td>100 mA</td>
<td>300 mW</td>
<td>130 MHz</td>
</tr>
<tr>
<td>BC 209</td>
<td>BC 206</td>
<td>100 mA</td>
<td>300 mW</td>
<td>130 MHz</td>
</tr>
</tbody>
</table>

The letters after the type number denote the current gain:
A: $\alpha' (\beta, hfe) = 125-260$
B: $\alpha' = 240-500$
C: $\alpha' = 450-900$.
In last month's issue of Elektor we published a design for a spot sinewave generator which offered truly 'top-notch' specifications. For the purposes of many amateurs, however, the accuracy provided by such a circuit (e.g. harmonic distortion of less than 0.0025%) is an expensive luxury. The circuit described here represents the other side of the coin — a simple cost-effective sinewave generator whose frequency can be continuously varied over virtually the entire audio spectrum, while being easy to construct and requiring no calibration. Just for good measure the circuit also offers the choice of a squarewave output.

The idea of incorporating a limiter in the feedback loop of an oscillator circuit as a means of stabilising the amplitude of the output signal was originally employed in the spot sinewave generator published in last month's issue of Elektor. That circuit was designed for extremely low harmonic distortion and high amplitude stability. The circuit described here, although employing a similar principle to its 'big brother' of last month, is intended to meet a different set of criteria. It was felt that many amateurs would appreciate a simple low-cost sinewave generator with continuously variable frequency which would require no complicated calibration procedure.

Block diagram
The block diagram of the simple sinewave generator is shown in figure 1. A selective filter is followed by a limiter circuit which clamps the signal level to + and −U_b. The output of the limiter is fed back to the input of the selective filter, thereby providing the conditions for oscillation. The circuit will only continue to oscillate if the loop gain of the system is greater than unity. To ensure that this requirement is always satisfied an amplifier is included in the feedback loop. The circuit is forced to oscillate at the centre frequency of the filter, since only at that frequency will the in- and output signals of the filter be in phase.

The reason why the amplitude of the output voltage of such an oscillator remains constant was described in detail in the above-mentioned article on the spot sinewave generator, to which readers are here referred. A continuously variable oscillator frequency is obtained by making the centre frequency of the selective filter tunable. The Q of the filter will inevitably vary with the centre frequency, thereby affecting the suppression of higher
The selective filter formed by op-amps A2 to A4 is of the 'variable state' type, and comprises two integrators and a summing amplifier. The centre frequency of the filter can be varied by means of P1. It is apparent that how well the two gangs of this potentiometer are matched will determine the amplitude stability of the output signal for changes in frequency.

The output of A3 (which is also fed back to A1) supplies the sine wave output of the generator. A1 is configured as an amplifier with a gain of ten and its output is clamped to approximately 12 volts peak to peak by means of zener diodes D5 and D6, before being fed back to the input of the selective filter. The clipped sine wave is also fed (via R9) to the Schmitt trigger formed by transistors T2, T3 and T4, with the resulting squarewave being buffered by transistors T5 and T6. The circuit operates off a 24 V supply. A virtual earth point is created via R11, R12, R13 and T1, so that a roughly symmetrical supply of ± 12 V is obtained.

Construction

The component layout and track pattern of the p.c.b. for the sine wave generator is shown in figure 3. One can either provide the case with three separate output sockets, or else use a single socket with a three-way waveform selector switch. The circuit requires no calibration. The only preliminary measure which, in view of component tolerances, may prove necessary is to experiment slightly with the value of R20 and R21. The frequency range of the sine wave generator is approx. 20 Hz to 25 kHz. The amplitude of the sine wave output is constant over the range 150 Hz to 6 kHz. Above this point there is a very slight rise in amplitude, and below 150 Hz the amplitude will tend to fall slightly. Harmonic
Figure 2. Complete circuit diagram. The amplitude of the sinewave output signal can be varied by means of P2.

Figure 3. Track pattern and component layout of the p.c.b. for the sinewave generator (EPS 79019). Only the transformer and potentiometers are mounted off-board.

Parts list:

Resistors:
R1, R17 = 100 k
R2 = 10 k
R3, R10, R19 = 2k2
R4, R7 = 330 k
R5, R6, R8, R22 = 27 k
R9 = 22 k
R11, R12 = 6k8
R13 = 1 k
R14 = 120 k
R15 = 47 k
R16, R26 = 1k5
R18 = 82 k
R20, R21 = 39 Ω (see text)
R23, R27 = 5k6
R24 = 2k7
R25 = 8k2
P1a/b = stereo potentiometer, 10 k log.
P2 = potentiometer, 47 k log.

Capacitors:
C1 = 220 p
C2 = 470 µ/40 V
C3, C4 = 100 n
C5 = 22 p
C6, C7 = 1 n
C8 = 10 µ/16 V

Semiconductors:
T1, T5 = BC557B
T2, T3, T4, T6 = BC557B
IC1 = TL084
D1 . . . D4 = 1N4001
D5, D6 = 5V6/400 mW

Miscellaneous:
S1 = mains on/off switch, 400 mA
F1 = fuse, 400 mA
transformer, 18 V/50 mA

distortion is less than 1% over the entire frequency range. The amplitude of the squarewave output is virtually constant over the entire range (8 Vpp). Current consumption is roughly 12 mA.
Universal Counter

Microprocessors and digital memories are not the only product areas to be influenced by the ever increasing chip densities achieved in LSI (Large Scale Integration) devices. Other more 'traditional' logic functions, which once were implemented using a mountain of discrete TTL- or CMOS ICs can now be realised with a single LSI chip.

This point was well illustrated by the design for the Elektor '1/4 GHz Counter' published in June 1978. The heart of the above circuit was a six-decade counter/display driver IC, the MK 50398N from Mostek. This one IC did the job which previously would have required a boxful of 7490's, 7475's etc.

As 'intelligent' as it was, however, the MK 50398N was by no means the last word on this subject, and sure enough, a new family of LSI counter/timer ICs has recently been announced, whose performance represents an advance on anything seen so far.

The device in question is the ICM 7216A/B/C/D from Intersil. As the type number suggests, there are four different versions of the chip; the ICM 7216A and B are fully integrated universal counters/display drivers for common-anode and common-cathode displays respectively (see table 1), whilst the ICM 7216C and D are frequency counter only versions of the above.

The chips combine a high frequency crystal oscillator, a decade timebase counter, an eight decade data counter plus latches, and associated elements for decoding, multiplexing and driving 8 large LED displays. Gate times of .01, 0.1, 1 and 10 seconds in the frequency counter mode allow input frequencies of up to 10 MHz. In the case of the 7216A and B the maximum input frequency in other modes is 2 MHz, whilst times can be measured over 1, 10, 100, and 1000 cycles to give period measurement from 0.5 µs to 10 seconds.

Additional features include: decimal point and leading zero blanking automatically controlled by the chip, hold and reset inputs, low power/display off mode, and internal test and display test functions. A single nominal 5 V supply is the sole power requirement.

Universal Counter

Of the four available versions of the chip, the ICM 7216A and B are the most interesting in view of the truly impressive range of different functions which they offer.

In addition to frequency counting, the devices can operate as a period counter, frequency ratio counter, time interval counter, and unit counter. The internal organisation of the chip is illustrated by the block diagram of figure 1.

The input signal is fed to input A, whereupon control logic determines whether it is fed to the clock input of the main counter, or whether (when measuring period, for instance) it is used to gate the internal clock signal of the IC to the main counter. The number of clock pulses counted by the latter is then an index for the length of the period.

When a 'store' pulse is received from the control logic, the contents of the main 10⁸ counter are transferred to the data latches. The 8 digit count data is converted into 7-segment code and multiplexed to the segment outputs. As already mentioned, the counter can measure more than simply frequency and period. When operated in the 'unit counter' mode, it counts the total number of pulses in the input signal (instead of the number of pulses per second). The chip will also measure the frequency ratio between two input signals, a facility which in certain situations can offer advantages over simple measurement of frequency. If, for example, an extremely stable reference frequency is available, in principle it is possible to measure an unknown input frequency with greater accuracy using this method. Furthermore, there are instances where the ratio of two frequencies is more important than their exact value, or where the frequencies vary but the ratio remains constant (e.g. in certain music applications). When functioning in the frequency ratio mode one input signal is fed to input A, the other to input B. To ensure good accuracy, the frequency of the signal fed to input A should be greater than that at input B. If the frequency ratio is greater than 10⁸, all 8 digits of the display can be used.

The fifth type of measurement of which the chip is capable is time interval. The chip counts the number of microseconds which elapse between a 1-0 transition occurring at input A and a 1-0 transition at the B input. To complete the measurement cycle input A must again go negative after B goes negative.

Under the heading Applikator, recently introduced components and novel applications are described. The data and circuits given are based on information received from the manufacturer and/or distributors concerned. Normally, they will not have been checked, built or tested by Elektor.
Table 1.
The various versions of the ICM 7216

<table>
<thead>
<tr>
<th>Feature</th>
<th>ICM 7216A</th>
<th>ICM 7216B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Universal counter displays</td>
<td>ICM 7216A</td>
<td>ICM 7216B</td>
</tr>
<tr>
<td>Frequency counter displays</td>
<td>ICM 7216C</td>
<td>ICM 7216D</td>
</tr>
</tbody>
</table>

Figure 1. Internal block diagram of the ICM 7216A/B.

Figure 2. In the time interval mode the counter measures the time, T, between a negative-going transition at input A and a negative transition at input B. In order to complete the measurement cycle, a second T=9 transition at input A is required.

Figure 3. Minimum configuration circuit for a universal counter employing the 7216B. The counter offers six different measurement functions with four ranges per function.

- see figure 2. Input A goes negative at time T=9, completing the measurement cycle and the elapsed time T is displayed.

Multiplexed interface

In the ICM 7216A and B efficient use is made of inputs and outputs by multiplexing. Not only are the segment driver outputs multiplexed, but the function, range, control and external decimal point inputs are time multiplexed also. The input functions which are required are selected by connecting the appropriate digit driver output to the inputs concerned. The functions selected by each digit for these inputs are listed in table 2. As can be seen, the digit driver outputs are numbered from do to d7. The digit driver for the extreme right-hand (least significant) digit is do, whilst d7 is the driver output for the extreme left-hand digit. Depending upon which of these outputs is connected to the function input, the chip will operate in one of the above-described modes. The connections to the function input may either be hard-wired or selected via a multi-way switch.

Which digit driver output is connected to the range input determines both the gate period of the main counter when used in the frequency mode, and the number of periods sampled in a period measurement. Both sets of values are listed in table 2. The greater the gate period or number of periods, the more accurate the measurement — although the latter will then take longer and there is a greater risk of an overflow occurring.

The control input provides a number of additional facilities. By connecting do to the control input and simultaneously taking the hold input to V+, the displays can be blanked, the chip remaining in the display-off mode until hold is returned low (V−). With the displays blanked the current consumption of the chip is reduced to around 2 mA. In the ‘display test’ mode all segments are enabled continuously, whilst in the general test mode the main counter is split into groups of two digits which are clocked in parallel. The control input is also responsible for determining the clock frequency. As can be seen from the table, in addition to the ‘standard’ 10 MHz crystal, there is the possibility of using a 1 MHz crystal or employing an external clock oscillator. The latter facility can prove useful when using the IC in larger systems.

In addition to the multiplexed control inputs, the IC has two ‘conventional’ inputs in the form of a hold input, which, as has already been mentioned, is normally held low, and a reset input. When the former is taken high the count is stopped and the contents of the main counter are latched, whilst the counter itself is reset. Taking ‘hold’ low again initiates a new measurement. The reset input is the same as the hold input, with the exception that the latches for the main counter are enabled, resulting in an output of all zeros.

In addition to the five measurement functions already mentioned (frequency, period, frequency ratio, time interval and unit count) the ICM 7216A and B offer the possibility of measuring the internal clock frequency. This facility is a little unusual and appears to be somewhat superfluous, since the gate time of the main counter is also determined by the internal clock oscillator and hence the count displayed cannot be used to determine if the
clock frequency is inaccurate. The most that can be ascertained is whether the chip itself is functioning satisfactorily.

Circuit Applications
An idea of the applications to which the ICM 7216 can be put is given by the circuit of figure 3. This circuit, which employs the B version of the chip, represents a ‘minimum-component’ complete universal counter.

The connections between the multiplex control inputs and the digit driver outputs are made via suitable multi-way switches. The 10 k resistors in series with the multiplexer inputs are to improve the noise immunity of these lines. Diodes D1...D3 prevent crosstalk between the digit driver outputs.

When switch S5 is open the circuit is clocked by the on-chip clock oscillator; with S5 closed, however, the external oscillator input (pin 24) is used, in which case the oscillator components (R5, C1, C2 and the crystal) can be omitted.

Positioning of the decimal point is automatically determined by the setting of the ‘range’ switch. The decimal point in the most significant digit, however, deserves explanation, since it also functions as an overflow indicator. In many cases it can be expected that a separate LED will be used in place of the conventional decimal point segment. The displays shown in figure 3 are of the common cathode type.

The above circuit of course represents only a very basic design which can be extended in numerous different ways for a variety of applications. An obvious example is the use of prescalers to enable frequencies greater than 10 MHz to be measured. Furthermore, since input A and input B are both digital inputs, additional circuitry will often be required for input buffering, amplification and level shifting in order to obtain a good digital signal. The cost and complexity of additional circuitry will of course vary depending upon the sensitivity and maximum frequency required.

Frequency-only applications: the C- and D-versions
The above description has concentrated on the features of the universal counter versions of the chip. However there are also frequency counter only versions of the ICM 7216 for use with both common anode and common cathode LED displays. These have only one measurement input, which corresponds to input A of the universal counter, whilst there is obviously no need for a function input. On the other hand, the 7216C and D do have two facilities absent on the A/B versions: a ‘measurement in progress’ output and an external decimal point enable input (see figure 4).

The measurement in progress output goes low whenever – as one might have guessed from its name – a measurement cycle is in progress. In addition to being used as an indicator output, this pin can be employed to control external circuitry if so desired.

The external decimal point enable input can be used to control the position of the decimal point directly by using the range switch, a facility which can prove useful with prescalers etc. If the external decimal point is selected, the internal decimal point control should be

Table 2.

<table>
<thead>
<tr>
<th>Functions of multiplexed control inputs (see text)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>Function input (pin 3 - ICM 7216A and B only)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Range input (pin 14)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Control input (pin 1)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

* hold input is high

Under the heading Applikator, recently introduced components and novel applications are described. The data and circuits given are based on information received from the manufacturer and/or distributors concerned. Normally, they will not have been checked, built or tested by Elektor.
<table>
<thead>
<tr>
<th>Table 3.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical specifications</td>
</tr>
<tr>
<td>Absolute maximum ratings</td>
</tr>
<tr>
<td>Max. supply voltage U_s</td>
</tr>
<tr>
<td>Max. digit output current</td>
</tr>
<tr>
<td>Max. segment output current</td>
</tr>
<tr>
<td>Voltage on any input or output terminal</td>
</tr>
<tr>
<td>Max. power dissipation (70°C)</td>
</tr>
<tr>
<td>Max. operating temperature range</td>
</tr>
</tbody>
</table>

Electrical characteristics (U_b = 5 V, 25°C)	
Operating supply current (display off)	2 mA
Maximum input frequency (function = frequency, ratio, unit counter)	10 MHz
Max. input frequency (function = period, time interval)	2.5 MHz
Min. time interval	250 ns
Max. ext. oscillator frequency	10 MHz
Min. ext. oscillator frequency	100 kHz
Multiplex frequency f_D = 10 MHz)	500 Hz
Time between measurements	200 ms
Input high voltage	3.5 V
Input low voltage	1.0 V
Digit driver current: high	200 mA
Digit driver current: low	300 μA
Segment driver current: high	15 mA
Segment driver current: low	10 μA
Measurement in progress output current	340 μA

Figure 4. shows a basic frequency counter configuration for the C version of the chip. To extend the frequency range to 100 MHz, a prescaler is used, which divides the input frequency by ten.

With the exception of the missing function switch, and common monochrome display (the C version), the remainder of the circuit is virtually identical to that of figure 3. The principal electrical characteristics of all four versions of the chip are summarized in table 3.

Figure 5. Pin-out of all four versions of the IC/7216.

Under the heading Applikator, recently introduced components and novel applications are described. The data and circuits given are based on information received from the manufacturer and/or distributors concerned. Normally, they will not have been checked, built or tested by Elektor.
Who's afraid of the one-bit µP?

One of the problems of microprocessors is that they require a considerable amount of specialised knowledge in order to operate them. An additional problem is that there are many applications for which their inherent sophistication renders them unsuitable. Recently, Motorola seem to have succeeded in killing two birds with one stone by bringing out a new IC, the Industrial Control Unit, MC14500B. This is a one-bit processor which has been specially designed for simple control applications, and is extremely easy to program. The following article takes a look at this ‘mini’-microprocessor, which should prove of particular interest to those readers who have had problems getting to grips with its ‘big brothers’.

Thanks to the inherent flexibility of the stored program concept, which allows system changes to be rapidly implemented simply by altering the program, the microprocessor is being used in an increasing number of control applications. Washing machines, sewing machines, ovens, are only a few of the consumer products which now feature microprocessors, whilst in industry, microprocessors have appeared on the shop-floor in a wide variety of adaptive control processes. However for certain control applications involving decision oriented tasks, (e.g. intruder alarms, signal controllers for model railways, slide changers, PROM programmers, to name but a few cases which are of interest to the amateur electronics enthusiast) such is the relative simplicity of the system, that the expense and sophistication of a microprocessor would be the equivalent of the sledgehammer used to crack a nut. For this reason, a new type of chip has been developed which is designed to offer the advantages of programmability, without the unnecessary complexity of a microprocessor — the Industrial Control Unit (ICU) or one-bit processor, of which the MC14500B from Motorola is an example.

The ICU can be viewed as a simplified form of microprocessor, capable of performing logic operations on one-bit input data and transferring the results to an output device. The great advantage of the ICU is the fact that it is uncomplicated and easy to program. The inexperienced user can rapidly familiarise himself with the basic system and learn how it can be tailored to meet his particular requirements. Thus the ICU also represents an excellent introduction to (micro-)processor based systems in general.

The following article provides a basic description of the MC14500B ICU, and with the aid of several simple examples, shows how it can be programmed to perform a variety of control functions. Those readers whose interest in the MC14500B is aroused by the article, are referred to the Motorola handbook for the device, which contains a more detailed description than we have room for here.

Characteristics

The Motorola MC14500B is a single chip, one-bit static CMOS processor, which is housed in a 16-pin DIL package. The IC executes one instruction per clock period and is timed by a single-phase internal clock oscillator, the frequency of which can be varied up to 1 MHz. Alternatively the clock signal can be controlled by an external oscillator. The electrical characteristics of the ICU conform to JEDEC B-Series specifications for CMOS B-Series devices. The IC has an operating supply voltage range of 3 to 18 V (in practice, assuming the device is not being operated in an electrically noisy environment, a supply voltage of 5 V can often be chosen, allowing the IC to be used in conjunction with TTL ICs (Data- and Write outputs can drive two normal TTL ICs).

The ICU differs from conventional logic ICs in its ability to be programmed to perform more than one type of logical operation. The instruction set of the ICU, which is shown in Table 1, consists of 16 four-bit instructions. The ICU is a one-bit processor, i.e. data is manipulated one bit at a time and is routed to and from the ICU via a 1-bit bi-directional data bus. To perform a logical operation requiring more than one bit of data (e.g. a logical AND), an internal register called the Result Register (RR) is used. To perform the logical AND function, the first data-bit is loaded into the Result Register by means of a LOAD instruction. The ICU is then supplied with an AND instruction, and the second data-bit is read onto the bi-directional data bus whereupon the logical AND operation is performed on the data present in the Result Register with the data present on the data bus. The result of this operation becomes the new content of the Result Register (which always receives the result of any of the ICU’s logical operations, hence its name).

Since a third instruction (STORE) would be required to transfer the result of the above logic function to an output device, it can be seen that three separate

Main characteristics of the ICU:

- can perform 16 logic functions
- 1-bit bi-directional databus
- 1-bit memory
- four flag outputs
- meets Jedeic-B specifications for CMOS ICs
- supply voltage range 3 . . . 18 V
- clock frequency DC . . . 1 MHz
- intended primarily for use in Industrial control systems
operations are needed to simulate a two-input AND gate (see figure 1). Like a microprocessor, the ICU operates on the stored program principle. The instructions to be executed by the ICU are normally stored sequentially in the system memory. However, in addition to the ICU's op-codes, the memory must also contain the address of the data to be loaded into the Result Register, or the address of the latch onto which the content of the Result Register is to be stored. The addresses are decoded by input and output selectors — as shown in the block diagram of figure 2. Once again, let us take the example of a logical AND function being performed on two input signals A and B, which are present at inputs 1 and 5 respectively of the input selector, and assume that the result of this operation is to be stored on output 9 of the output latch. When an address is presented to the input or output selector the corresponding input or output is connected to the data line of the ICU. Thus the AND operation is performed as follows:

1) The system memory provides the ICU with the LOAD (LD) instruction and supplies the input selector with the input address. The logic level of this input is then transferred via the ICU's one-bit data bus to the one-bit Result Register.

2) The ICU fetches the next instruction from system memory — the AND instruction — whilst the input selector is supplied with the address of input 5. The addressed input data is demultiplexed onto the ICU's data line and then is logically 'ANDed' with the data in the Result Register. The original contents of the Result Register are lost.

3) Finally, the ICU is provided with the STORE (STO) instruction, whilst the output selector is presented with the address of output latch 9. The data in the Result Register is then transferred to this output latch via the bi-directional data line.

Table 1. Instruction set of the ICU.

<table>
<thead>
<tr>
<th>Instruction Code</th>
<th>Mnemonic</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>#0 0000</td>
<td>NOPO</td>
<td>No change in registers, (R \rightarrow R), FLGO (\leftarrow _L)</td>
</tr>
<tr>
<td>#1 0001</td>
<td>LD</td>
<td>Load Result Reg. Data (\rightarrow R)</td>
</tr>
<tr>
<td>#2 0010</td>
<td>LDC</td>
<td>Load Complement Data (\rightarrow R)</td>
</tr>
<tr>
<td>#3 0011</td>
<td>AND</td>
<td>Logical AND (R + D \rightarrow R)</td>
</tr>
<tr>
<td>#4 0100</td>
<td>ANDC</td>
<td>Logical AND Compl. (R \cdot D \rightarrow R)</td>
</tr>
<tr>
<td>#5 0101</td>
<td>OR</td>
<td>Logical OR (R + D \rightarrow R)</td>
</tr>
<tr>
<td>#6 0110</td>
<td>ORC</td>
<td>Logical OR Compl. (R + D \rightarrow R)</td>
</tr>
<tr>
<td>#7 0111</td>
<td>XOR</td>
<td>Exclusive NOR (\text{If } R = 0, \text{then set } D, \text{else set } R)</td>
</tr>
<tr>
<td>#8 1000</td>
<td>STO</td>
<td>Store. (R \rightarrow Data Pin, Write \rightarrow 1)</td>
</tr>
<tr>
<td>#9 1001</td>
<td>STOC</td>
<td>Store Compl. (R \rightarrow Data Pin, Write \rightarrow 1)</td>
</tr>
<tr>
<td>#A 1010</td>
<td>IEN</td>
<td>Input Enable. (D \rightarrow IEN Reg.)</td>
</tr>
<tr>
<td>#B 1011</td>
<td>OEN</td>
<td>Output Enable. (D \rightarrow OEN Reg.)</td>
</tr>
<tr>
<td>#C 1100</td>
<td>JMP</td>
<td>Jump. JMP Flag (\leftarrow L), Skip next inst.</td>
</tr>
<tr>
<td>#D 1101</td>
<td>RTN</td>
<td>Return. RTN Flag (\leftarrow L), Skip next inst.</td>
</tr>
<tr>
<td>#E 1110</td>
<td>SKZ</td>
<td>Skip next instruction if (R = 0)</td>
</tr>
<tr>
<td>#F 1111</td>
<td>NOFF</td>
<td>No change in Registers (R \rightarrow R), FLGF (\leftarrow L)</td>
</tr>
</tbody>
</table>
Program Memory and Program Counter

One of the advantages of an ICU-based system is that the number of inputs and outputs can be expanded virtually ad infinitum, providing the memory is sufficiently wide to address the I/O ports. The Program Counter (PC) supplies the system memory with the address of the instruction to be executed. The PC will normally count up to its highest value and then 'wrap-around' to zero and start counting up again. Thus the sequence of instructions in memory can be repeated, providing a 'looping' program.

Minimum system

Figure 3 shows the circuit of a minimum ICU-system based on the block diagram of figure 2. The system has 8 inputs and 8 output latches. IC3 is a specially designed type of multiplexer-demultiplexer, which, like the ICU, has a bidirectional data line. Thus, the MCU can not only write data onto an output latch, it can read data off it as well. Both the desired instruction and the appropriate address are set up on a dual-in-line switch. In this case, the clock signals are supplied by hand, by depressing the pushbutton switch S1. Care should be taken to ensure that only one clock pulse is given at a time, lest the MCU execute a particular instruction several times in succession.

The state of the Result Register, data line, etc. can be displayed by means of LEDs, which are connected via buffers to the most important points in the circuit. If things threaten to get out of hand, S2 takes the reset pin of the MCU high, clearing all registers and resetting the FLAG outputs.

With a four-bit address word, up to 16 locations can be selected; in this case 8 inputs and 8 outputs. The highest address bit, A3, is used to control the Chip-Enable (CE) inputs of IC2 and IC3, and hence switch between input and output lines. In conjunction with the Write signal of the MCU, A3 ensures that only one device, be it IC2, IC3 or the MCU, has access to the data line at any given time.

The basic design of the system shown in figure 3 bears a close resemblance to that of larger microprocessor-based systems, which also contain a data bus and address bus shared by a large number of ICs.

With the practical circuit of figure 3, let us see how one would actually execute the above example of a logical AND function. As we have seen, the program for an AND operation is:

1. LOAD A
2. AND B
3. STORE C

The op-code for these instructions can be found by looking up the instruction set of the MCU in Table 1.1.

First, however, we must ensure that A is present at input 1, B at input 5 and that C is stored on output 9. In this case the addresses of these locations are simply the binary equivalent of 1,5 and 9, i.e. 0001, 0101 and 1001 respectively. Thus the DIL switch should be set as follows:

1) 0001 0001 - whereupon a clock pulse is applied (A is transferred to RR)
2) 0011 0101 - another clock pulse (A • B = C)
3) 1000 1001 - another clock pulse (C is transferred to output 9)

Step by step, therefore, the procedure is as follows:

The four right-hand DIL switches are set to address (in binary) 0001, with the result that on the next clock pulse, input 1 of IC2 is connected to the data line of the MCU. By means of e.g., a wire link, this input should be connected to logic 1. Once the four left-hand switches have been set to the instruction code 0001 (= LOAD), S1 should be pressed, taking the clock signal at pin 14 of the MCU low and extinguishing the clock signal indicator LED. On the negative going edge of the clock signal (the clock signal was previously high) the MCU latches the LOAD instruction
The third instruction differs from the first two slightly. Once the op-code of the instruction (1000 = STO) and the correct address have been programmed on the DIL switch and S1 pressed, the ICU executes the instruction immediately. The only instructions which the ICU will execute on the negative going edge of the clock pulse are STORE and Flag instructions. The Flag instructions (JMP, RTN, FLGO, FLGF) are used to provide external control signals by setting pins 9 through 12 of the ICU. These output flags remain active for a full clock period after the negative-going edge of the clock signal.

In the case of the STORE instruction, the moment the ICU reads the instruction into its Instruction Register the content of the Result Register is put on the data line and the Write line (pin 2) is enabled (taken high), with the result that the logic state of the data line is latched onto the appropriate output (FF9). On the positive-going edge of the clock pulse the Write line goes high again.

The state of the various indicator LEDs at each stage in the above program are shown in Table 2. The above program is a simple example of how the ICU can be programmed to simulate a conventional logic gate. Further examples of programs designed to imitate the function of logic ICs (4-input AND, NAND, OR, EXOR etc.) are shown in figure 8.

As was pointed out earlier, the ICU requires a number of operations to perform the single function executed by a conventional logic device (e.g. 10 program steps are needed to perform...
the function of a D-flip-flop). Thus the ICU will inevitably take longer to execute a given logic operation than its dedicated counterpart. For example, with a clock frequency of 330 kHz, the above program for a 2-input AND will take approx. 10 μs. However, this trade-off in terms of speed is the consequence of the simplicity and, more importantly, the flexibility of the ICU, which allows it to be programmed for a wide variety of different functions.

The ability to step through a program one instruction at a time is particularly convenient for the beginner who is attempting to familiarise himself with microprocessor programming. However, such a procedure is naturally time consuming. Particularly for longer programs, the obvious solution (as is shown in the block diagram of figure 4) is to store the program instructions in memory and employ a program counter to ensure that they are presented to the ICU in the correct sequence. The clock pulses can then be provided by the ICU's internal clock oscillator, the frequency of which can be set to up to 1 MHz (i.e. 1 instruction every 1 μs).

The circuit of a suitable instruction and address memory is shown in figure 5. The instructions and operand addresses are entered by hand into two 256 x 4-bit RAMs (type 2112). The program counter, which consists of two 4029's (presettable binary/decimal counters) counts from 0000 up to 256 and then starts from 0000 again. The counter increments by one after each clock pulse and ensures that the contents of the next memory location are presented to the ICU. Thus the program instructions are executed in the correct sequence.

Instructions are programmed into memory as follows: The initial contents of the memory are first erased by closing the DATA switch, setting switch S2 in figure 3 to the 'run' position, and pressing the 'write' switch. This has the effect of writing logic '0' into every location in memory. The frequency of the internal clock oscillator (determined by the 56 k external resistor) is 330 kHz, which means that the entire memory is erased in approx. 1 ms.

Switch S2 of figure 3 should then be set to the 'single-step' position, thereby stopping the clock oscillator. The first program instruction accompanied by the operand address is now set up on the data lines of the 2112's and written into the memories by pressing the 'write' switch. A clock pulse is then provided by hand, incrementing the program counter in preparation for the next instruction to be entered.

Once all the instructions have been stored in memory the program can be run simply by switching S2 to the 'run' position. Of course it is also possible to continue to provide the clock pulses by hand, stepping through the program one instruction at a time, and checking the state of the program by means of the LEDs. To this end the second DIL switch and the 'load' button have been included.

When entering a program the program counter is incremented at each instruction, thus a program containing e.g. 5 instructions would leave the program counter at 005. If one then wants to step through the program by hand, it would involve supplying 256 - 5 = 251 clock pulses until the program counter 'wrapped round' to the start of the program. With the aid of the DIL-switch and 'load' button, this becomes unnecessary. One simply sets up the address of the first instruction (e.g. 0000 00001) on the DIL-switch and presses the 'load' button. The program counter is then set to that address.

By adding additional LEDs with accompanying buffers (ULN 2003) it is a simple matter to display the state of the program counter and contents of the memory at any given moment. If desired, one could also use 7-segment displays, or perhaps the best idea of all – link the entire system up to an existing microprocessor system; figure 6 provides a simple interface circuit for linking an ICU system to the SC/MP. The display and the keyboard of the SC/MP system can then be used to read data into and out of the ICU system memory. A further advantage of this arrangement is that the cassette dump routine of the SC/MP can be used to store programs for the ICU system. The ICU represents a useful extension to the SC/MP system, since it can be used to assume a number of simple control tasks, freeing the microprocessor for more complex operations.

Enabling Instructions – IEN OEN

Before proceeding to examine an example of a program which can be run on the above-described system, it is first necessary to take a look at two ICU instructions which are of prime importance: IEN and OEN.
All microprocessor systems provide the facility to perform conditional jumps, i.e., depending upon the result of a test, the processor jumps from one part of the program to another. Such a provision allows the processor to make logical decisions. For example: If signal A is high, the red lamp should light; if A is low, the green lamp must light. The conventional way of solving this problem is to test signal A and depending upon the outcome the processor will either continue normally (i.e., the program counter is incremented by one and loads the address of the previous instruction + 1) or else perform a jump to another part of the program (i.e., the program counter is incremented not by one, but by, e.g., 10, 100, etc.).

The section of program which has been 'jumped over will contain the instruction 'turn on the red lamp and extinguish the green lamp', whilst the section of program to which the processor jumps will contain the instruction 'extinguish the red lamp and turn on the green lamp'.

To implement such a jump, however, requires a more complicated chip structure than is present on the ICU, thus an alternative approach is necessary. The solution chosen is to have the ICU execute the program in the correct sequence, however, depending upon the result of the test, prevent the ICU from actually carrying out a block of instructions. This is the function of the IEN and OEN instructions which respectively inhibit input data from effecting the system's output and latch the system's outputs into their current state by inhibiting the Write signal.

Figure 5. With the addition of memory and a program counter the ICU system can perform independently, running programs at a speed determined by the frequency of the ICU's internal clock oscillator. In the case of the circuit shown in figure 5, the clock frequency is approx. 300 kHz, which means that any version of the 2112 may be used.

Figure 6. It is a simple matter to interface the ICU to the SC/MP system. With a little skill the appropriate connections can be via IC sockets, which replace the DIL switches. With the inverter in address line 13, the address of the ICU system memory is 20900 . . . 20 FF.

Figure 7. These two flow diagrams illustrate how the ICU is capable of performing conditional jumps. Assuming that the program in question contains two blocks of instructions, numbered I and II, a normal microprocessor system could jump over a block of instructions simply by forcing the appropriate address into the program counter. The ICU, however, runs through all the instructions in the program, but simply fails to execute the block of instructions to be 'jumped'.

IEN

This instruction causes the ICU to latch the data on the data line into its 'input enabling register'. If the input enabling register is loaded with a logic '0', all further input data is interpreted by the ICU as logic '0', until the IEN register is loaded with logic '1' (by a subsequent IEN instruction). (Note that an LDC or ORC instruction will cause the Result Register to be loaded with a logic '1', regardless of the state of the inputs. A certain amount of care is required when using the IEN instruction).

OEN

The operation of the OEN instruction is similar to that of the IEN instruction. The ICU latches the data on the data line into its output enabling register. If that data is logic '0', the Write signal from the ICU is inhibited, thereby disabling the output latches.

Once the OEN register has been loaded with a logic '0', the system outputs will remain in their current state until the OEN register is loaded with a logic '1' (by a subsequent OEN instruction). Thus the ICU will effectively jump over whole blocks of instructions, since they will have no effect upon the system outputs.

An example of a conditional program jump using the OEN instruction is shown in figure 7a. A is first loaded into the Result Register, and the complement of A is stored in a temporary scratch-pad memory. The OEN instruction performs the test 'A = 0'. If A does in fact equal logic '0', the OEN instruction results in the outputs being
<table>
<thead>
<tr>
<th>Line no.</th>
<th>instr.</th>
<th>hex</th>
<th>binary</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>ORC</td>
<td>60</td>
<td>0110</td>
<td>0000 force RR to '1'</td>
</tr>
<tr>
<td>02</td>
<td>IEN</td>
<td>A0</td>
<td>1010</td>
<td>0000 enable inputs</td>
</tr>
<tr>
<td>03</td>
<td>OEN</td>
<td>B0</td>
<td>1011</td>
<td>0000 enable outputs</td>
</tr>
<tr>
<td>04</td>
<td>LD</td>
<td>C1</td>
<td>11</td>
<td>0001 0001 load '1'</td>
</tr>
<tr>
<td>05</td>
<td>XNOR</td>
<td>B1</td>
<td>0111</td>
<td>1110 EXNOR with first bit of counter</td>
</tr>
<tr>
<td>06</td>
<td>STOC</td>
<td>B1</td>
<td>0110</td>
<td>1110 store result in first bit of counter</td>
</tr>
<tr>
<td>07</td>
<td>AND</td>
<td>C1</td>
<td>0111</td>
<td>0001 generate carry</td>
</tr>
<tr>
<td>08</td>
<td>STOC</td>
<td>C2</td>
<td>0111</td>
<td>1110 store carry in scratch-pad</td>
</tr>
<tr>
<td>09</td>
<td>XNOR</td>
<td>B2</td>
<td>0111</td>
<td>1101 EXNOR previous carry with second bit of counter</td>
</tr>
<tr>
<td>10</td>
<td>STOC</td>
<td>B2</td>
<td>0111</td>
<td>1101 store result in 2nd bit of counter</td>
</tr>
<tr>
<td>11</td>
<td>AND</td>
<td>C1</td>
<td>0011</td>
<td>1111 generate new carry</td>
</tr>
<tr>
<td>12</td>
<td>AND</td>
<td>C2</td>
<td>0110</td>
<td>1111 store new carry in scratch-pad</td>
</tr>
<tr>
<td>13</td>
<td>XNOR</td>
<td>B3</td>
<td>0111</td>
<td>1110</td>
</tr>
<tr>
<td>14</td>
<td>STOC</td>
<td>B3</td>
<td>0111</td>
<td>1110</td>
</tr>
<tr>
<td>15</td>
<td>AND</td>
<td>C2</td>
<td>0111</td>
<td>1111</td>
</tr>
<tr>
<td>16</td>
<td>STOC</td>
<td>C3</td>
<td>0111</td>
<td>1111</td>
</tr>
<tr>
<td>17</td>
<td>XNOR</td>
<td>B4</td>
<td>0111</td>
<td>1011</td>
</tr>
<tr>
<td>18</td>
<td>STOC</td>
<td>B4</td>
<td>0111</td>
<td>1011</td>
</tr>
<tr>
<td>19</td>
<td>AND</td>
<td>C3</td>
<td>0111</td>
<td>1111</td>
</tr>
<tr>
<td>20</td>
<td>STOC</td>
<td>C4</td>
<td>0111</td>
<td>1111</td>
</tr>
<tr>
<td>21</td>
<td>XNOR</td>
<td>B5</td>
<td>0111</td>
<td>1111</td>
</tr>
<tr>
<td>22</td>
<td>STOC</td>
<td>B5</td>
<td>0111</td>
<td>1111</td>
</tr>
<tr>
<td>23</td>
<td>AND</td>
<td>C4</td>
<td>0111</td>
<td>1111</td>
</tr>
<tr>
<td>24</td>
<td>STOC</td>
<td>C5</td>
<td>0111</td>
<td>1111</td>
</tr>
<tr>
<td>25</td>
<td>XNOR</td>
<td>B6</td>
<td>0111</td>
<td>1011</td>
</tr>
<tr>
<td>26</td>
<td>STOC</td>
<td>B6</td>
<td>0111</td>
<td>1011</td>
</tr>
<tr>
<td>27</td>
<td>AND</td>
<td>C5</td>
<td>0111</td>
<td>1111</td>
</tr>
<tr>
<td>28</td>
<td>STOC</td>
<td>C6</td>
<td>0111</td>
<td>1111</td>
</tr>
<tr>
<td>29</td>
<td>XNOR</td>
<td>B7</td>
<td>0111</td>
<td>1011</td>
</tr>
<tr>
<td>30</td>
<td>STOC</td>
<td>B7</td>
<td>0111</td>
<td>1011</td>
</tr>
<tr>
<td>31</td>
<td>AND</td>
<td>C6</td>
<td>0111</td>
<td>1111</td>
</tr>
<tr>
<td>32</td>
<td>IEN</td>
<td>A0</td>
<td>1010</td>
<td>0000 disable inputs</td>
</tr>
<tr>
<td>33</td>
<td>OEN</td>
<td>B0</td>
<td>1011</td>
<td>0000 disable outputs</td>
</tr>
</tbody>
</table>

Thus every program should commence with the following start routine:

```
ORC RR
IEN RR
OEN RR
```

(in the minimum system described above the Result Register is connected to input 0, i.e. address 000).

It is also a useful precaution to terminate each program by forcing logic '0' into the IEN and OEN registers. This prevents the ICU executing any other instructions which may be stored subsequently in memory. The appropriate routine is ANDC RR (which forces a logic '0' into the Result Register, followed by OEN RR and IEN RR).

Sample Program

Table 3 lists an example of a program which can be run on the basic ICU system which has been described above. IC3 is used as a counter, and each time the program, which is 34 steps long, is executed the contents of the counter are incremented by one. The counter is 8 bits wide, however one bit is used as a 'scratch-pad' memory to store the carry bit, so that in actual fact the maximum count is $2^7 = 128$. With a clock frequency of roughly 300 kHz and a program counter which counts up to 256 before wrapping around to 000, the program will perform one complete loop and the counter will increment by one approx. every 0.9 ms (256x$3.33\mu s$).

LED 8, which displays the content of bit 8 of the counter will therefore flicker on and off every 128 x 0.9 ms = 109 ms, i.e. something just under 10 Hz.

The counter is actually incremented as follows: when adding two bits together there are only four possible outcomes, $0 + 0 = 0$, $1 + 0 = 1$, $0 + 1 = 1$, and $1 + 1 = 1$. Only in the last case ($1 + 1 = 1$) will a carry be generated. The logic function represented by the above truth table can be simulated by means of an XNOR instruction, which outputs a '1' if and only if both inputs are the same, followed by STOC, which inverts the result. The carry is generated using the AND instruction; a condition for generating a carry is that the result of the XNOR function is '1', and that one of the two inputs was also '1'. The addition is carried out with one bit of the counter, which is combined with the carry from the preceding addition. At the start of the count there is no carry from the preceding bit, so that a '1'
Photo 1. Prototype board for the minimum ICU system.

Table 3. Listing of a sample program which uses IC3 as a counter to make an LED flash off and on.

Figure 8. The ICU is specially designed to execute a wide variety of logic functions. The logic gates shown here can all be simulated by the corresponding set of ICU instructions. As the example of the D flip-flop shows, even quite complicated logic operations can be performed using the ICU.

must first be presented to input 1. If a '0' were at this input, the circuit would simply add zeroes and the output of the counter would never change.

The operation performed by the program can be expressed by the following equations:

$$S_n = B_n + C_n$$

(where $S = \text{Sum}$, $B = \text{Bit}$, $C = \text{Carry}$ and n may equal 1, 2, ... 7)

Thus Bit 1

- Carry 1 + '1'
- Sum 1 - '0'

Carry 2 = Sum 1 • Bit 1

= '0' • '1'
= '1' • '1'
= '1'

As a further illustration of the type of programming required, figure 8 lists several short program sections that can be used to simulate standard logic functions.

Lit.:

Motorola Industrial Control Unit Handbook. (Available from Motorola distributors.)
The printed circuit board has been completed and tested. It is working fine and now ready to fit into the case. But what about the power supply? Is it still that ‘Christmas tree’ tacked onto the transformer terminals? It happens to most of us (or so it would seem) judging from the comments in our reader's letters. All too often the power supply is forgotten until the last moment, especially if the test equipment includes a variable power supply.

The ideal situation is, of course, to have a printed circuit board for the power supply as well as for the project and this is possible via the Elektor Print Service. In many Elektor circuits the power supply has been included on the main printed circuit board. However, there are a number of others that are entirely separate and the purpose of this article is to group these together as a handy reference.

We have included the most useful circuit diagrams and it will be apparent that many can be modified to suit specific requirements. The 78** regulators are interchangeable provided the transformer can supply 3 volts above the regulated voltage (e.g. the 7815 requires 18 V from the transformer). Remember also that the working voltages of the capacitors must be adequate (otherwise they could become momentary action switches - once!).

** 5 V 500 mA
This circuit with component changes will suit many applications.
Board number EPS 9448-1.

Parts list
Resistors:
R1 = 150 Ω

Capacitors:
C1, C2 = 100 n
C3 = 2200 µ/16 V
C4 = 470 n
C5 = 10 µ/6 V

Semiconductors:
D1, D2, D3, D4 = 1N4004
D5 = LED e.g. TIL 209
IC1 = μA 7805 or LM 129

Miscellaneous:
Tr = mains transformer, 9 V, 0.5 secondary
PSUs on PCBs

+15 V 250 mA and −15 V 250 mA
Originally designed for the Elektor TV
scope but very useful where op-amps are
used.
Board number EPS 9968-5a.

Parts list

Capacitors:
C1,C2 = 470 µ/35 V
C3,C4 = 100 n
C5,C6 = 1 µ/25 V tantalum

Semiconductors:
IC1 = 7815
IC2 = 7915
D1 ... D4 = 1N4001

Miscellaneous (not on p.c. board
proper, see figure)
Tr1 = mains transformer,
2 x 18 V/250 mA
S1 = double-pole mains switch
F1 = fuse, 100 mA

+15 V 1 A
Board number EPS 9218b, limited stocks
still available, price £ 1.05.

Parts list

Capacitors:
C1 = 2200 µ/40 V
C2,C4 = 100 n
C3 = 470 µ/16 V

Semiconductors:
IC1 = 7815
B = 4 x 1N4004

Miscellaneous:
Transformer with 24 V/1 A
secondary
Symmetrical ±5-15 V 1 A
Issue E15/16, July/August 1976, page 7-63.
Board number EPS 9637, limited stocks still available, price £ 0.80.

+12 V, +33 V
(Abar).
Board number EPS 9437.

Parts list
Resistors:
R1 = 1 Ω
R2 = 3k3
R3 = 4k7
R_X = see text

Capacitors:
C1…C4 = 100 n
C5 = 2200 µ/40 V
C6 = 47 µ/10 V
C7 = 100 p

Semiconductors:
T1 = BD 241A, MJE 3055
D1,D2 = 1N4002, BY 188
IC1 = 723

Miscellaneous:
Tr = Transformer, 24 V/1.5 A
NiCad Accumulator, 18 V
(see text)
+30 V 2 A and -30 V 2 A
Outputs independently variable.
Board number EPS 9004.

Parts list:

Resistors:
R1, R2 = 47 Ω
R3, R4 = 0.33 Ω/2 W
R5 = 71k5
R6 = 3k3, 1 W
P1 = 100 k lin.
P2 = 47 k lin.

Capacitors:
C1, C2 = 4700 μ, 35 V
C3, C4 = 1 n
C5, C6 = 100 μ, 35 V

Semiconductors:
IC1 = RA4194 (Raytheon)
T1 = Tip 2985
T2 = TIP 3055
T3, T4 = BC 140-10, 2N1711
D1 = LED
B1 = B90C5000 (80 V, 5 A)

Various items:
Tr = mains transformer,
2 x 22 V/2 A
+0...10 V 300 mA
Board number EPS 77059.

+5 V 3 A and −12 V 500 mA
Originally designed for the SC/MP and
would suit many microprocessor sys-
tems.
Board number EPS 9906.
Parts list

Resistors:
R1, R4 = 2k7
R2 = 8k2
R3 = 100 Ω
R5 = 0.18 Ω/2 W (see text)
R6 = 180 Ω
P1 = 2k8
P2 = 1 k

Capacitors:
C1 = 2200 μ/25 V (see text)
C2, C3 = 100 n
C4 = 1 n
C5 = 10 μ/16 V
C6 = 1000 μ/25 V
C7 = 1 μ/25 V tantalum

Semiconductors:
IC1 = 723
IC2 = 78G
T1 = BD 137, BD 139
T2 = 2N3055
B1 = B40 C6000 40 V
5 A bridge rectifier (see text)
B2 = B40 C800 40 V
800 mA bridge rectifier

Miscellaneous:
Tr1 = Transformer 12 V,
3...4 A secondary
(see text)
Tr2 = Transformer 15 V,
0.5 A secondary (see text)
F1, F2 = 300 mA slow blow fuse
High accuracy control of ultra-fine torque

For applying and checking ultra-fine torque values to a guaranteed accuracy of ± 2%, a range of torque gauges is available from MHH Engineering. The gauges have bi-directional operation and three scales in either direction for easy reading from any angle on the dial and two (standard and mirror image) on the sleeve. Slave pointers operating in either 115 V (± 15%) a.c. at a frequency of 47 - 63 Hz, and is selectable from the front panel. Regulation is within 0.2% on both outputs for a worst-case combination of ± 15% input and 0 - 100% load change. Ripple on both outputs is 10 mV r.m.s. maximum and 50 mV peak-to-peak (30 MHz bandwidth), and temperature coefficient is less than 0.01% per degC. The Gould MGD500 is protected against overcurrent, overvoltage and overtemperature, and has a hold-up time of 28 ms at full load in the event of mains failure. Insulation voltage is 2.1 kV d.c. between input and ground and 500 V d.c. between output and ground, and insulation resistance is not less than 50 MΩ at 500 V d.c. The transient response is such that the output returns to within 1% of its original value within 500 μs of a 50% load change. There is no limit on parallel operation with other units, and units may be operated in series to a maximum total voltage of 250 V. The output voltage can be remotely programmed with a ± 5% variation for system margin checking.

Gould Electronic Components Division,
Rayleigh Road,
Bishop’s Stortford,
Herts. CM23 5PF England.

Switching power supply with fan

A new dual-output switching power supply from Gould Electronic Components Division, the MGD500, incorporates a fan-cooling system which enables the unit to provide a high power density and also offers the facility for mounting in any plane. Designed specifically to power systems using emitter-coupled logic, the MGD500 provides two independently controlled outputs which track together, and gives a total power output of 526 W from a package measuring 5 x 8 x 10.5 in (12.7 x 20.3 x 26.7 cm). The two d.c. outputs provided by the Gould MGD500 are 5.2 V (± 0.2 V), adjustable from 0 to 80 A, and 2.2 V (± 0.1 V), adjustable from 0 to 50 A, with a common positive terminal. Input voltage can be either 230 V or 110 V (± 15%) a.c. at a frequency of 47 - 63 Hz, and is selectable from the front panel. Regulation is within 0.2% on both outputs for a worst-case combination of ± 15% input and 0 - 100% load change. Ripple on both outputs is 10 mV r.m.s. maximum and 50 mV peak-to-peak (30 MHz bandwidth), and temperature coefficient is less than 0.01% per degC. The Gould MGD500 is protected against overcurrent, overvoltage and overtemperature, and has a hold-up time of 28 ms at full load in the event of mains failure. Insulation voltage is 2.1 kV d.c. between input and ground and 500 V d.c. between output and ground, and insulation resistance is not less than 50 MΩ at 500 V d.c. The transient response is such that the output returns to within 1% of its original value within 500 μs of a 50% load change. There is no limit on parallel operation with other units, and units may be operated in series to a maximum total voltage of 250 V. The output voltage can be remotely programmed with a ± 5% variation for system margin checking.

Gould Electronic Components Division,
Rayleigh Road,
Bishop’s Stortford,
Herts. CM23 5PF England.

Solar power panel

Ferranti Electronics Limited has developed a new solar power module for industrial, professional and domestic applications. The MST300 series has been designed for long life under extremes of environmental and climatic conditions. The standard module contains thirty-six silicon cells, each 3 inches in diameter, series connected to give an output of 1.1amps at 14.4 volts. It measures 560 mm x 480 mm and is only 130 mm deep. Its aluminium construction offers good heat sink capability and makes the module ideal for use in high ambient temperature zones.

Telephone line simulator

Telephone lines were originally designed for voice transmission rather than high speed data communication, so it is not surprising that the latter is subject to signal degradation and errors when transmitted over existing lines. To assist in the design of modems and data transmission equipment a new instrument capable of simulating telephone line distortions has been manufactured by Axel Electronics Incorporated, New York.

Switch-selectable simulation of standard line worst-case characteristics is possible, and in addition the instrument can superimpose such steady-state disturbances as variable random noise, phase jitter, frequency shifts and harmonic distortion, as well as transient phenomena including impulse noise, phase and amplitude hits, and amplitude drop-outs. All simulated disturbances can be selected and varied individually or simultaneously.

Central alarm system

Elektor 42, October 1978 p. 10-20. On the p.c board for the master station (figure 9), pin 3 of IC6 should ideally be connected to supply common or positive supply (e.g. pin 1) – we have often stressed in the past that unused inputs of CMOS Ics should not be left floating! In practice it will not normally make any difference, but if the IC is running hot this is almost certainly the reason.

Similarly, on the alarm board (figure 8); if either of the two alarm inputs ‘X’ and ‘Y’ is not used, it must be connected to supply common. A floating input at this point can easily result in ‘false alarms’!

1/4 Gigahertz counter

Elektor 38, June 1978, p. 6-01. The sensitivity of the high frequency input amplifier (figure 9) can be improved by decreasing R79 to 47 Ω and inserting a 500 Ω (470 Ω) carbon preset potentiometer in series with it; R78 is decreased to 15 k and R84 is replaced by a wire link.

To reduce clipping of the low frequency input amplifier (figure 11) a DUS can be placed in series with both zener diodes D32 and D33.

In the parts list D36 is given as a 2V7 zener diode; this should in fact be 4V7 as the circuit diagram shows.

The module is hermetically sealed to prevent moisture entering the resin filled space containing the silicon cells. Injection of this resin ensures that all air is removed from between the cover and base plate, an important feature of the design as air pockets have been known to cause premature module failure. A cover of fibre reinforced polyester provides protection against the environment including such extremes as sand blasting or ultra violet degredation. An additional bonus of the design concept is the ease with which it is possible to change the module dimensions. Where necessary, additional silicon cells can be incorporated to meet specific customer requirements.

Ferranti Electronics Limited
Fields New Road
Chadderton
Oldham
OL9 8NP

(1092 M)
Ultra low noise preamplifier

The SL561C from Plessey Semiconductors is a high gain, low noise preamplifier designed for use at frequencies up to 6 MHz. Upper and lower cut-off frequencies can be selected by single capacitors and the gain selected between 10 and 60 dB with a single resistor. Operation at low frequencies is eased by the small size of the external capacitors and the low 1 F noise.

The noise voltage is less than 1 nV/\sqrt{Hz} and the current consumption of the circuit is 2 mA from a single 5 volt supply. Applications include use with photo-conductive IR detectors, magnetic tape heads and dynamic microphones. It will also replace an op-amp in many applications where a DC response is not required.

Plessey Semiconductors Limited, Cheney Manor, Swindon, Wiltshire, SN2 2OQ, England. (1088 M)

New range of miniature buzzers

Not miniature electronic wasps from Scotland but a range of small buzzers being produced by Highland Electronics under the type number GA 100/K. Emitting a 400 Hz signal with an output of 70 – 83 dB (A) at 22 cm., they have no moving contacts and do not cause any electrical or R.F. interference.

Current consumption is from 16 to 25 mA making them suitable for use in portable or battery operated equipment requiring an audible warning. The case measures 22 x 15 x 10 mm and is made from a high quality plastic, colour-coded according to the four operating voltages of 2.5, 6, 12 and 24 volts.

Highland Electronics Ltd, Highland House, 8, Old Steine, Brighton, East Sussex, BN1 1EJ, England. (1091 M)

High profile DIL switch

A special high profile dual in-line switch for front panel and through panel mounting has been announced by Erg Components. The basic version is a 4-pole 2-way DIL switch that can be finger actuated, or switched by using a small probe. All wiping action contacts are gold plated and specifically designed for high reliability via/2A switching, with a maximum voltage/current capability of 240 V AC/2 A (non-switching), 30 V/0.25 A (switching). Custom design versions are also available.

Erg Industrial Corporation Ltd, Eaton Road, Dunstable, Bedfordshire, LU5 4LJ, England. (1090 M)

Digital audio transistors

A range of epibase and single-diffused TO-220 packages are now available from Micro Electronics Ltd. They are designed for audio output and switching applications, with current ratings of 2 A to 7 A and power ratings of 20 W to 50 W. The devices are available in four chip configurations for both amplification and control circuits.

Audio transistors

The transistors with epibase chips are designed for good linearity of d.c. current gain, a higher frequency response (up to 3 MHz), and feature a good safe operating area. Both n-p-n and p-n-p complementary versions are available. These characteristics make the Micro Electronics epibase devices ideally suited to use in the output and driver stages of high-fidelity amplifiers. The range of single-diffused transistors available from Micro Electronics Ltd. are characterised by a drift safe operating area, and are more suitable for use in voltage regulators, solenoid drivers, and low-speed switching and control circuits.

Gaussmeter/fluxmeter

RFL Industries have announced a new magnetic-measuring instrument, used for measuring both flux density and total flux. The model 906 Portable Digital Gaussmeter/fluxmeter is designed for use in the laboratory, in production, or in field locations. When operating in its gaussmeter mode, the instrument uses probes based on the Hall effect. A wide range of transverse and axial probes is available from RFL.

Quad bi-fet switch

PM1’s new quad Bi-FET switches deliver high-performance but without the problems that plague competing CMOS products.

Built-in axial and transverse reference magnets provide overall accuracy better than ± 0.1%. Full-scale ranges of 1000 and 10,000 gauss provide resolution of 1 and 10 gauss, respectively. Capability for 100% overrange provides for measurement up to 20,000 gauss on the instrument’s 3-1/2 digit liquid-crystal display.

As an integrating fluxmeter, the Model 906 provides ranges of 10° and 10° maxwell-turns. Probes required for measurements in the fluxmeter mode are available from RFL, or the user may fabricate his own as the need arises.

The model 906 operates from either 115- or 230-volt, 50-60 Hz power, or from its internal gel-cell (TM, Gould, Inc.) battery which is included for field operation. A charging circuit is included. The

Precision Monolithics, Inc. 1500 Space Park Drive Santa Clara, California 95050, U.S.A. (1095 M)
Here's why you should buy an I.C.E. instead of just any multimeter

- Best Value for money.
- Used by professional engineers, D.I.Y. enthusiasts, hobbyists, service engineers.
- World-wide proven reliability.
- Low servicing costs.
- 20K/volt sensitivity and high accuracy.
- Large mirror scale meter.
- Fully protected against overload.
- Large range of inexpensive accessories.
- 12 month warranty, backed by a full after sales service at E.B. Sole U.K. Distributors.

Prices from £16.60 — £32.00 + VAT